Name:

I	II	III	IV	V	VI	TOTAL
39	14	11	11	11	14	100

I. True or false? Please circle your are (1.5 points for each correct answer,	but be careful : 1 point will be subtracted for each	h wrong	g ar	nswer!)
1] Math 461: Topology is by far th	e best class you have ever taken	TRUE		FALSE
2] If $f: X \to Y$ is a function and X	X is countable, then $f(X)$ is countable	TRUE		FALSE
3] If $f \colon X \to Y$ is a function and Y	Y is countable, then $f(X)$ is countable	TRUE		FALSE
4] If $f \colon X \to Y$ is a function and Y	Y is countable, then $f^{-1}(Y)$ is countable	TRUE		FALSE
5] If X is a discrete topological spatchen any subspace of X is discrete	ace, ete	TRUE		FALSE
	h is not discrete (i.e., not all subsets are open), te.	TRUE		FALSE
7] If X is a disconnected topologic then any subspace of X is discon	al space, nnected	TRUE		FALSE
8] If X is a path-connected topolog then any subspace of X is path-	gical space, connected	TRUE		FALSE
9] If X is a compact topological sp then any closed subspace of X	bace, is compact.	TRUE		FALSE
10] If X is a Hausdorff topological strength then any subspace of X is Hausdorff topological strength.	space, dorff	TRUE		FALSE
11] If X is a second-countable topol then any subspace of X is secon	logical space, d-countable	TRUE		FALSE
12] If X is a second-countable topol	ogical space,		1	

then any **basis** for the topology of X is countable. TRUE | FALSE

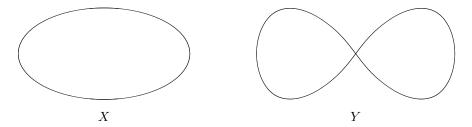
13] If A and B are connected subspaces of a topological space X and $A \cap B \neq \emptyset$, then $A \cup B$ is connected.	. TRUE	FALSE
14] If A and B are connected subspaces of a topological space X and $A \cap B \neq \emptyset$, then $A \cap B$ is connected.	. TRUE	FALSE
15] If $f: X \to Y$ is a continuous function between topological spaces X and Y , then for every open subset U of X , $f(U)$ is open in Y	. TRUE	FALSE
16] If $f: X \to Y$ is a homeomorphism between topological spaces X and Y , then for every open subset U of X , $f(U)$ is open in Y	. TRUE	FALSE
17] If $f: X \to Y$ is a bijective function between topological spaces X and Y , and for every open subset U of X , $f(U)$ is open in Y , then f is a homeomorphism.	TRUE	FALSE
18] If X is a Hausdorff space, Y is a compact space, and $f: X \to Y$ is a continuou and bijective function, then f is a homeomorphism		FALSE
19] If X and Y are both compact metric spaces, and $f: X \to Y$ is a continuous and bijective function, then f is a homeomorphism	. TRUE	FALSE
20] \mathbb{R} and \mathbb{R}^2 with the standard topologies are homeomorphic	. TRUE	FALSE
21] \mathbb{Z} and \mathbb{Z}^2 with the discrete topologies are homeomorphic	. TRUE	FALSE
22] If $f: X \to Y$ is a continuous function between topological spaces X and Y , and X is connected and compact, then $f(X)$ is connected and compact	. TRUE	FALSE
23] If $f: X \to Y$ is a continuous function between topological spaces X and Y , and X is separable, then $f(X)$ is separable	. TRUE	FALSE
24] If $f: X \to Y$ is a continuous function between topological spaces X and Y , and X is Hausdorff, then $f(X)$ is Hausdorff	. TRUE	FALSE
25] If $X = \mathbb{R}$ is given the cofinite (also known as finite complement) topology, then the function $f: X \to X$, $f(x) = \sin(x)$, is continuous	. TRUE	FALSE
26] If $X = \mathbb{R}$ is given the cofinite (also known as finite complement) topology, then the function $f: X \to X$, $f(x) = x^2$, is continuous	. TRUE	FALSE

II. Fill in the blanks in the following theorem.

Theorem. Let X and Y be topological spaces, and let $f: X \to Y$ be a function. Then the following conditions are equivalent:
(i) f is continuous, i.e., for every open subset U of Y , $f^{-1}(U)$ is
(ii) for every closed subset C of Y , $f^{-1}(C)$ is
(iii) for every subset A of X , one has $f(\bar{A})$;
(iv) for every subset B of Y , one has $f^{-1}(\bar{B})$;
(v) for every point $x \in X$ and every neighborhood V of $f(x)$ in Y , there is

Prove exactly two implications of your choice from this theorem.

III. Consider the following two subspaces of \mathbb{R}^2 with the standard topology.



Are X and Y homeomorphic? Justify your answer carefully.

IV. Complete the following definition.

Definition. If X is a topological space and A is a subset of X, then the *closure* of A in X is

$$\overline{A} = \left\{ x \in X \mid \dots \right\}.$$

• If $X = \mathbb{R}^2$ with the **standard** topology and $A = \{(x,y) \in \mathbb{R}^2 \mid x^2 + y^2 < 1 \text{ and } x \neq 0\}$, then what is \overline{A} ?

- Now let X be a set and let A be a non-empty subset of X.

 The possible answers for the three following questions are as follows:
 - (1) $\overline{A} = A$.
 - (2) $\overline{A} = X$.
 - (3) $\overline{A} = \begin{cases} A & \text{if } A \text{ is finite,} \\ X & \text{if } A \text{ is infinite.} \end{cases}$

Write the number corresponding to the correct answer in each of the boxes below.

- If X has the **cofinite** (also known as finite complement) topology and $\emptyset \neq A \subset X$, then

V. Complete the following two definitions, and then write the precise statement (without proof!) of either the intermediate value theorem or the extreme value theorem.
Definition. A topological space X is disconnected if and only if
Definition. A topological space X is $compact$ if and only if
Assume that X is
and that f is
Then

- VI. Solve **only one** of the following two problems.
 - A] Recall that S^0 denotes the topological space with only two points $\{+1, -1\}$ and the discrete topology. Prove that a topological space X is disconnected if and only if there exists a continuous and surjective function $f: X \to S^0$.
 - B] Recall the following result that we proved in class.

Lemma. If C is a compact subset of a Hausdorff space X and $x \in X - C$, then there exist open subsets U and V of X such that $C \subset U$, $x \in V$, and $U \cap V = \emptyset$.

Now let X be a Hausdorff space, and let C and D be compact subsets of X such that $C \cap D = \emptyset$. Prove that there exist open subsets U and V of X such that $C \subset U$, $D \subset V$, and $U \cap V = \emptyset$.