Name: | I | II | III | IV | V | VI | TOTAL | |----|----|-----|----|----|----|-------| | 39 | 14 | 11 | 11 | 11 | 14 | 100 | | | | | | | | | | | | | | | | | | I. True or false? Please circle your are (1.5 points for each correct answer, | but be careful : 1 point will be subtracted for each | h wrong | g ar | nswer!) | |--|---|---------|------|---------| | 1] Math 461: Topology is by far th | e best class you have ever taken | TRUE | | FALSE | | 2] If $f: X \to Y$ is a function and X | X is countable, then $f(X)$ is countable | TRUE | | FALSE | | 3] If $f \colon X \to Y$ is a function and Y | Y is countable, then $f(X)$ is countable | TRUE | | FALSE | | 4] If $f \colon X \to Y$ is a function and Y | Y is countable, then $f^{-1}(Y)$ is countable | TRUE | | FALSE | | 5] If X is a discrete topological spatchen any subspace of X is discrete | ace,
ete | TRUE | | FALSE | | | h is not discrete (i.e., not all subsets are open),
te. | TRUE | | FALSE | | 7] If X is a disconnected topologic then any subspace of X is discon | al space,
nnected | TRUE | | FALSE | | 8] If X is a path-connected topolog then any subspace of X is path- | gical space,
connected | TRUE | | FALSE | | 9] If X is a compact topological sp
then any closed subspace of X | bace, is compact. | TRUE | | FALSE | | 10] If X is a Hausdorff topological strength then any subspace of X is Hausdorff topological strength. | space,
dorff | TRUE | | FALSE | | 11] If X is a second-countable topol then any subspace of X is secon | logical space, d-countable | TRUE | | FALSE | | 12] If X is a second-countable topol | ogical space, | | 1 | | then any **basis** for the topology of X is countable. TRUE | FALSE | 13] If A and B are connected subspaces of a topological space X and $A \cap B \neq \emptyset$, then $A \cup B$ is connected. | . TRUE | FALSE | |---|--------|-------| | 14] If A and B are connected subspaces of a topological space X and $A \cap B \neq \emptyset$, then $A \cap B$ is connected. | . TRUE | FALSE | | 15] If $f: X \to Y$ is a continuous function between topological spaces X and Y , then for every open subset U of X , $f(U)$ is open in Y | . TRUE | FALSE | | 16] If $f: X \to Y$ is a homeomorphism between topological spaces X and Y , then for every open subset U of X , $f(U)$ is open in Y | . TRUE | FALSE | | 17] If $f: X \to Y$ is a bijective function between topological spaces X and Y , and for every open subset U of X , $f(U)$ is open in Y , then f is a homeomorphism. | TRUE | FALSE | | 18] If X is a Hausdorff space, Y is a compact space, and $f: X \to Y$ is a continuou and bijective function, then f is a homeomorphism | | FALSE | | 19] If X and Y are both compact metric spaces, and $f: X \to Y$ is a continuous and bijective function, then f is a homeomorphism | . TRUE | FALSE | | 20] \mathbb{R} and \mathbb{R}^2 with the standard topologies are homeomorphic | . TRUE | FALSE | | 21] \mathbb{Z} and \mathbb{Z}^2 with the discrete topologies are homeomorphic | . TRUE | FALSE | | 22] If $f: X \to Y$ is a continuous function between topological spaces X and Y , and X is connected and compact, then $f(X)$ is connected and compact | . TRUE | FALSE | | 23] If $f: X \to Y$ is a continuous function between topological spaces X and Y , and X is separable, then $f(X)$ is separable | . TRUE | FALSE | | 24] If $f: X \to Y$ is a continuous function between topological spaces X and Y , and X is Hausdorff, then $f(X)$ is Hausdorff | . TRUE | FALSE | | 25] If $X = \mathbb{R}$ is given the cofinite (also known as finite complement) topology, then the function $f: X \to X$, $f(x) = \sin(x)$, is continuous | . TRUE | FALSE | | 26] If $X = \mathbb{R}$ is given the cofinite (also known as finite complement) topology, then the function $f: X \to X$, $f(x) = x^2$, is continuous | . TRUE | FALSE | ## II. Fill in the blanks in the following theorem. | Theorem. Let X and Y be topological spaces, and let $f: X \to Y$ be a function. Then the following conditions are equivalent: | |--| | (i) f is continuous, i.e., for every open subset U of Y , $f^{-1}(U)$ is | | (ii) for every closed subset C of Y , $f^{-1}(C)$ is | | (iii) for every subset A of X , one has $f(\bar{A})$; | | (iv) for every subset B of Y , one has $f^{-1}(\bar{B})$; | | (v) for every point $x \in X$ and every neighborhood V of $f(x)$ in Y , there is | | | | | Prove exactly two implications of your choice from this theorem. III. Consider the following two subspaces of \mathbb{R}^2 with the standard topology. Are X and Y homeomorphic? Justify your answer carefully. IV. Complete the following definition. **Definition.** If X is a topological space and A is a subset of X, then the *closure* of A in X is $$\overline{A} = \left\{ x \in X \mid \dots \right\}.$$ • If $X = \mathbb{R}^2$ with the **standard** topology and $A = \{(x,y) \in \mathbb{R}^2 \mid x^2 + y^2 < 1 \text{ and } x \neq 0\}$, then what is \overline{A} ? - Now let X be a set and let A be a non-empty subset of X. The possible answers for the three following questions are as follows: - (1) $\overline{A} = A$. - (2) $\overline{A} = X$. - (3) $\overline{A} = \begin{cases} A & \text{if } A \text{ is finite,} \\ X & \text{if } A \text{ is infinite.} \end{cases}$ Write the number corresponding to the correct answer in each of the boxes below. - If X has the **cofinite** (also known as finite complement) topology and $\emptyset \neq A \subset X$, then | V. Complete the following two definitions, and then write the precise statement (without proof!) of either the intermediate value theorem or the extreme value theorem. | |--| | Definition. A topological space X is disconnected if and only if | | | | | | | | | | Definition. A topological space X is $compact$ if and only if | | | | | | | | | | | | Assume that X is | | and that f is | | Then | | | | | | | | | - VI. Solve **only one** of the following two problems. - A] Recall that S^0 denotes the topological space with only two points $\{+1, -1\}$ and the discrete topology. Prove that a topological space X is disconnected if and only if there exists a continuous and surjective function $f: X \to S^0$. - B] Recall the following result that we proved in class. **Lemma.** If C is a compact subset of a Hausdorff space X and $x \in X - C$, then there exist open subsets U and V of X such that $C \subset U$, $x \in V$, and $U \cap V = \emptyset$. Now let X be a Hausdorff space, and let C and D be compact subsets of X such that $C \cap D = \emptyset$. Prove that there exist open subsets U and V of X such that $C \subset U$, $D \subset V$, and $U \cap V = \emptyset$.