Math 461: Topology, Fall 2009	Quiz # 9, December 7
Name:	
Fill in the blanks!	
Definition 1. A topological space X is <i>compact</i> if and only if	
Definition 2. A topological space X is disconnected if and only in	f
Definition 3. A topological space X is $separable$ if and only if	
Proposition 4. Let X be a topological space. If X is	countable, then X is separable.
Conversely, if X is separable and	\dots , then X is second-countable.
Proposition 5. Let X and Y be topological spaces, and let $f: X$	$T \to Y$ be a continuous bijective function.
If X is and Y is	$\dots,$ then f is a homeomorphism.
Proposition 6. Let X be a topological space, and let A and B	B be subspaces of X . If A is connected
and	,
then $A \cup B$ is connected.	