| Math 461: Topology, Fall 2009 | Quiz # 9, December 7 | |---|---| | Name: | | | Fill in the blanks! | | | Definition 1. A topological space X is <i>compact</i> if and only if | | | | | | | | | Definition 2. A topological space X is disconnected if and only in | f | | | | | | | | Definition 3. A topological space X is $separable$ if and only if | | | | | | | | | Proposition 4. Let X be a topological space. If X is | countable, then X is separable. | | Conversely, if X is separable and | \dots , then X is second-countable. | | Proposition 5. Let X and Y be topological spaces, and let $f: X$ | $T \to Y$ be a continuous bijective function. | | If X is and Y is | $\dots,$ then f is a homeomorphism. | | Proposition 6. Let X be a topological space, and let A and B | B be subspaces of X . If A is connected | | and | , | | then $A \cup B$ is connected. | |