AMAT 327(Z): Elementary Abstract Algebra, Spring 2011	Quiz # 14, April 15
Name:	
1] Please complete the following sentences:	
A] A subset H of a group G is a $subgroup$ if and only if the following two cond	itions hold:
• for every $h, k \in H$	
• for every $h \in H$	
B] A subgroup H of a group G is $normal$ if and only if for every $a \in G$ and for	every $h \in H$
C] A function $f \colon G \to G'$ from a group G to a group G' is a homomorphism if an	d only if for every $a, b \in G$
D] The kernel of a homomorphism $f: G \to G'$ is $\ker(f) = \{\dots \dots \dots$	}.
2] Are the following statements true or false? Please circle your answers.	
A] For every homomorphism $f \colon G \to G'$ we have $e \in \ker(f) \dots$	TRUE FALSE
B] For every homomorphism $f \colon G \to G'$, $\ker(f)$ is a normal subgroup of G	TRUE FALSE
C] A homomorphism $f \colon G \to G'$ is injective if and only if $\ker(f) = \{e\} \dots$	TRUE FALSE
D] A homomorphism $f \colon G \to G'$ is surjective if and only if $\ker(f) \neq \{e\} \dots$	TRUE FALSE
E] I would like my third lowest quiz grade to be dropped, too	TRUE FALSE