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TODO

add exercises from:

Graph Theory books
Network book
KC book
QC book
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Scribe System

Two different students will be assigned to take notes for each
class, starting today
Your notes will be in LATEX; notes are due before the next class
begins
A LATEXtemplate will be available on the class web page:
www.cs.rpi.edu/~bushs; follow the instructions embedded
inside the template
The goal is to form a shared resource for all class participants;
you will be depending on others’ taking good notes
Your grade will focus on content of your notes, however, if too
much improper syntax results in the inability to process your
LATEX, then points will be deducted
Please email me (bushsf@research.ge.com) your contact
information
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Networks

Send information

Quickly
Low cost

What does this mean?
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What Is Information?

Cost and delay are easily measurable

What about information?

Amount?
Correctness?
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Information Representation

(show example from JPEG webpage)

Choosing how to represent information impacts storage and
transmission
Consider an image stored as a two dimensional array of pixels

Chroma subsampling involves encoding images by
implementing more resolution for luminance information than
for color information
The human visual system is much more sensitive to variations
in brightness than color
A video system can be optimized by devoting more bandwidth
to Y’ than the color difference components Cb and Cr
Y’ is the luma component and Cb and Cr are the blue and red
chroma components
The 4:2:2 Y’CbCr scheme for example requires two-thirds the
bandwidth of (4:4:4) R’G’B’
Reduction results in almost no visual difference as perceived by
the viewer
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Video Coding Representations

Consider the impact of transmitting the output of each
function without further processing...
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Measuring Information

Claude Shannon developed information theory to
systematically measure the efficiency of communication

Prior Art:

Fourier Transform
Nyquist telegraph efficiency
Hartley measured information content of messages

Nyquist and Hartley were both at Bell Labs when Shannon
arrived

Kolmogorov and Kolmogorov Complexity
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Some basics...

A channel code contains redundancy to allow more reliable
communication in the presence of noise. This redundancy
means that only a limited set of signals is allowed: this set is
the code.

A source code is used to compress words (or phrases or data)
by mapping common words into shorter words (e.g. Huffman
Code).

Note: A code word is an element of a code. Each code word
is a sequence of symbols assembled in accordance with the
specific rules of the code and assigned a unique meaning.
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Nyquist modeled telegraphs and digital networks

Given:

C The rate at which information flows across a noiseless channel

S(t) A signal which is a linear combination of periodic signals, so

S(t) =
n∑

i=0

Si (t)

m The number of levels which S(t) can assume (correspond to
number of symbols in an alphabet), each symbol has log2 m
bits of information.

F The frequency of the highest frequency S(t) component.
Nyquist showed the sampling rate must be at least 2F for
accurate signal reconstruction. The rate which information can
be sent across a noiseless channel is: C = 2F log2 m
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Hartley’s Work

Hartley used the notation:

h the amount of information in a message
n the amount of randomly selected symbols
s the number of symbols

To derive: h = n log s

Assumes that the individual symbols are selected with equal
probability

This was just before the dawn of the digital age and assumes
decimal digits

Hartley’s 1928 paper, called simply Transmission of Information, made explicitly clear that information was a

measurable quantity, reflecting only the receiver’s ability to distinguish that one sequence of symbols had been

intended by the sender rather than any other. The Hartley information, H0, is still used as a quantity for the

logarithm of the total number of possibilities.
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What is Information?

Consider a stopped clock. Does looking at that clock provide
any information?

What about flipping an unfair coin that always comes up
heads? Would such a coin toss provide new information?

A comprehensive quantitative analysis of information is
illusive, often ultimately depending upon the subjective
intelligence of the receiver.

Shannon and Kolmogorov have been the best innovators in
this field.
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Information and Predictability

A totally predictable process does not provide information.

Consider the coin toss example again, but with a fair coin this
time.

Each time we flip the coin, we get one bit of information

Bit is coincidentally (haha) the same word as in digital logic
and has a similar (but not exactly the same) meaning.
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Introduction to Entropy

Shannon defined the entropy of an information source.

Informally, entropy refers to the unpredictability of the
information from physics and thermodynamics.

More formally, for an information source sending messages
composed of symbols from an alphabet, X = x1, x2, x3, . . .
where pi is the probability of transmitting the symbol xi , the
entropy of that information source is:

H = −
n∑

i=1

pi log2 pi

(Note when pi = 0, we use pi log2 pi = 0)
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Entropy Is Convex
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An Entropy Example

Suppose that an information source sends H for heads and T
for tails of a toss of a coin, with the probabilities ph and pt

respectively.

In class, solve for the per symbol entropy of this information
source for the following cases:

1. ph = pt = 1/2 (a fair coin)
2. ph = 1, ph = 0 (a certain event)
3. ph = 3/4, pt = 1− ph = 1/4 (an unfair coin)

Hint: recall that entropy measure as H = −
n∑

i=1

pi log2 pi :

...and when pi = 0, we use pi log2 pi = 0.
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Solution

Applying our definition and substituting we get:
H = −ph log(ph)− pt log(pt)

Solving for each case by substituting in the values given we
get:
1. ph = pt = 1/2 (A fair coin).
H = −1/2 log2(1/2)− 1/2 log2(1/2)
H = −1/2× (−1)− 1/2× (−1)
H = 1/2 + 1/2 = 1
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Solution

2. ph = 1, pt = 0 (A certain event).
H = −1 log2(1)− 0 log2(0)
H = (−1× 0) + 0 = 0

3. pt = 3/4, pt = 1− ph = 1/4 (An unfair coin)
H = −3/4 log2(3/4)− 1/4 log2(1/4)
H ≈ −(3/4×−0.415)− (1/4×−2)
H = 0.811
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Noise

Noise in information theory is a corruption of a signal across a
communication channel (so the receiver does not get what
was sent)

Shannon modeled the following system
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Noise and Entropy

Suppose that an information source sends a symbol As and a destination
received a symbol Ar . Assume the symbols are selected from an alphabet
A = A1, . . . ,Am.

The entropy of the sender of the sender and the receiver are:

H(S) =
m∑

S=1

Pr(S) log Pr(S)

H(R) =
m∑

R=1

Pr(R) log Pr(R)

The entropy of S being sent and R being received is:

H(S ,R) =
m∑

S=1

m∑
R=1

Pr(S ,R) log Pr(S ,R)

Where Pr(S ,R) is the probability of S Being sent and R being received.
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Conditional Entropy

Recall that the conditional probability of X given that Y was observed is
denoted Pr(X |Y ).

Bayes theorem states that if X and Y are independent events then:
Pr(X |Y ) = Pr(X ,Y )

Pr(y)

The entropy (uncertainty) of R being received given that S was sent is:

H(R|S) = −
m∑

R=1

m∑
S=1

Pr(S)Pr(R|S) log2 Pr(R|S)

The entropy (uncertainty) of S being sent given that R was received is:

H(S |R) = −
m∑

R=1

m∑
S=1

Pr(R)Pr(S |R) log2 Pr(S |R)
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Active Networking: A Natural Evolution
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Shannon versus Kolmogorov

1

1
Active Virtual Network Management Prediction: Complexity as a Framework for Prediction, Optimization,

and Assurance Stephen F. Bush, Proceedings of the 2002 DARPA Active Networks Conference and Exposition

(DANCE 2002), IEEE Computer Society Press, pp. 534-553, ISBN 0-7695-1564-9, May 29-30, 2002, San

Francisco, California, USA.
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Kolmogorov Complexity

Consider an Active Network: Data can be sent as executable
code.

Kφ(x) = min
φ(p)=x

l(p)

Which is the length (l) of the smallest program (p) on a
Universal Turing machine (φ) that generates a of given string
of bits (x).
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Turing Machine

Recall

Q is a finite set of states

Γ is a finite set of the tape alphabet

b ∈ Γ is the blank symbol (the only symbol allowed to occur on the tape
infinitely often at any step during the computation)

Σ, a subset of Γ not including b is the set of input symbols

δ : Q × Γ → Q × Γ× {L,R} is a partial function called the transition
function, where L is left shift, R is right shift.

q0 ∈ Q is the initial state

F ∈ Q is the set of final or accepting states
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Universal Turing Machine

Turing first universal Turing machine
Marvin Minsky in the early 1960s (7 states)
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Kolmogorov Complexity

(Show some examples from KC book)
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Kolmogorov Complexity

Kolmogorov Complexity and Active Networks

K (x) is the complexity or alternative view of the amount of
information. In active network: send smallest program that
generates bits to be transmitted a.

a
Active Virtual Network Management Prediction: Complexity as a Framework for Prediction, Optimization,

and Assurance S. F. Bush, Proceedings of the 2002 DARPA Active Networks Conference and Exposition (DANCE

2002), IEEE Computer Society Press, pp. 534-553, ISBN 0-7695-1564-9, May 29-30, 2002, San Francisco,

California, USA.

Open Problem: Cannot derive or prove that smallest program has
been found in the general case (opportunity?).
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Data Compression and Information Theory

Data compression: replace longer low-entropy data representations
with equivalent shorter high entropy data representations

Compression Creates the shorter/higher entropy representation
given the longer low entropy source.

Lossy or lossless Sometimes data can be lost (sound/video)
without major degradation.

Statistical compression replaces high frequency
symbols with shorter representations(e.g.
Huffman Encoding)

Substitutional compression Replaces sequences of symbols with
short patterns (LZW compression)

Decompression Restores data to its original format (or an
approximation if lossy techniques are used).
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Huffman Coding

Huffman codes are an optimal statistical compression on a per
character basis (the old UNIX compact command).

Compression typically requires two passes

Count the frequency of each character in the input and then
construct the Huffman encoding tree.
Emit the dictionary mapping each encoding symbol to the
original character, and for each character in the input append
its encoded representation.

Decompression-single pass, read the dictionary and invert the
encoding.
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Building a Hoffmann Coding Tree

1 Take each character and create a node containing the
character and its frequency with no children.

2 While there are two or more nodes in the set.

(a) remove the 2 nodes with the lowest frequency
(b) make a new node having these 2 nodes as its children, and
set its frequency to the sum of its child frequencies.
(c) insert the new node back into the set of nodes

3 Assign the nodes in the tree and coding as follows:
(a) for each leaf, traverse the tree from root to leaf

(i) if the sub-tree is the left sub-tree, append a zero to the
encoding
(ii) else append a 1 to the encoding
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In-class Exercise 1 of 2

Consider a file composed of ASCII digits, where each digit has the
following frequency

Symbol 0 1 2 3 4 5 6 7 8 9
Frequency 0.20 0.25 0.15 0.08 0.07 0.06 0.05 0.05 0.0 0.04

1 Draw Hoffman encoding tree(derive the encoding)

2 Suppose that these frequencies occurred in 106 bytes of data,
how many bytes would it take to code this data(ignoring the
dictionary).
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In-class Exercise 1 of 2
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In-class Exercise 1 of 2

Space needed =
9∑

i=0

106characters × frequency(i) × BitsToEncode(i)× 1byte

8bits

Space needed = 106 ×Mean Bits Per Character× 8bits
byte

Space needed = 106 ×Mean Bits Per Character× 1byte
8bits

Space needed = 106 × 3.04bits per character× 8bits
byte

Space needed = 380, 000bytes

Since ASCII coding requires 106 bytes and BCD requires
500,000 bytes, we get compression ratios of 2.63 and 1.32
respectively.
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Network Coding: The Concept

Both messages are
received by both receivers
due to xor (⊕) operation

Maximum flow through
the network links is
achieved

Recall (and contrast) with
our maximum flow
optimization homework
problem
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Network Coding: The Application

Consider a simple wireless
routing scenario (with and
without network coding)

4 separate transmissions
required without network
coding

3 separate transmissions
utilizing coding (same xor
operation as in previous
slide)
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The Error Detection Problem

Sometimes errors occur during communication (we will
investigate how and why later).
Suppose a sender S sends a message Ms to a receiver R which
gets message Mr . The transmission is successful if Ms = Mr ,
otherwise the message was garbled during transmission.
How could we know if and Ms = Mr when S and R are
different machines?
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Introduction to Error Detecting Codes 1 of 2

The answer is that it is impossible to know if Mr = Ms with
complete certainty, but we can check with high probability as
follows:

The sender and receiver use an agreed upon function F which
operates on a message as its input.
The sender computes Gs = F (Ms).
The sender transmits a message containing Ms and Gs .
The receiver decodes the received message Mr and received
function evaluation Gr .
The receiver accepts the message as valid if and only if
F (Mr ) = Gr , otherwise an error is detected.
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Intro to Error Detecting Codes 1 of 2
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Noiseless Channel Capacity

Shannon’s Fundamental Theorem for a Noiseless Channel states:

Theorem 2

Given a source with entropy H bits per symbol and a noiseless
channel with capacity C bits per second, then it is possible to
transmit information at a rate of:

C
H + ε for arbitrarily small values of ε but not faster.

In practice this implies that no channel can transmit data
faster than:

lim
ε→0

C

H
+ ε =

C

H
(symbols/second)
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Noise and Channel Capacity

Shannon was able to show the (surprising) result that a
communication channel’s capacity gradually degraded as noise
is added.

Theorem 3

The capacity of a channel with bandwidth B, signal power S , and
noise N > 0 is:

C = B log2
S+N

N .

So channel capacity decreases gradually in response to noise.
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Thermal Noise

From physics it can be shown that thermal noise is N = kTB,
where k is Boltzmans constant and T is temperature
measured in Kelvin, implying that:

C = B log2
S+N

N

C = B log2
S+kTB

kTB

Pierce states that as a bandwidth B increases it can be shown
the limiting capacity of the channel is approached:
C = BS

kT ln 2 bits per second
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Hamming Distance an Error Detection

Consider to messages X and Y composed of symbols from the same
alphabet.

The Hamming Distance between x and y is defined as the number of
positions where the symbol in X does not match the corresponding
symbol in Y.

Error detection and correction require that code words (valid messages)
requires a large Hamming Distance (or a small number of errors becomes
undetectable).
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Distance and Error Detection

Distance (Hamming Distance) between code words allows invalid
messages to be detected (since the fall in the gaps).

Note: Distance may not necessarily be Euclidean and maybe in a
many dimensioned space.

Typically error correction assumes that the nearest code word to
received a message is the intended message.
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Hamming Example I

Notice how parity is
distributed among
the data bits

D Data bit

P Parity bit
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Hamming Example II

With a valid code,
parity in each circle
is properly
maintained.
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Hamming Example III

An example with an
erroneous bit...
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Hamming Example IV

Hamming distance of three

Only 000 and 111 are valid codewords

The correct codeword is near any single erroneous bit-flip
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Introduction to CRC

Cyclic redundancy codes (CRC) are among the most powerful
methods for checking errors (as we will discover later).

A CRC uses an nth degree generator polynomial G (x) with
coefficients of either 0 or 1 using modulo 2 arithmetic.
Typically the high and low order coefficients must be 1.

We represent a polynomial as the bit string
B = bn, bn − 1, ..., b0 such that:

G (x) =
n∑

i=0

bix
i

So for if G (x) = x4 + x + 1, then B = 10011
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CRC Computation

In modulo to arithmetic:

Additions (and subtraction) do not carry or borrow, and are
equivalent to exclusive-or operator (⊕).
To divide, the traditional long division methods are performed
using modulo-2 subtraction.

To compute the CRC we:

Append n zeros to our message M(x).
Using the modulo to arithmetic, we compute:
C (x) = M(x) mod G (x)
where “mod” is the remainder of division.
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CRC Computation
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The Computation Example Revisited

Computers store bits, and networks transmit bits, not polynomials. To convert,

we treat the bit string as the coefficient of the system and then evaluate the

CRC.
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Key Point

Encoding: adds the remainder after dividing by g(x), this is
the same as subtracting the remainder, making the result
evenly divisible by g(x):

b(x) = g(x)q(x) + r(x) + r(x) = g(x)q(x)

Decoding: because result is evenly divisible by g(x), remainder
must be zero if valid, otherwise error.
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Linear Codes – Sender

Append n − k
check bits that are
functions of the k
information bits

Example:
n = 7, k = 4

 1 0 1 1 1 0 0
1 1 0 1 0 1 0
0 1 1 1 0 0 1




b1

b2

b3

b4

b5

b6

b7


=

 0
0
0


HbT = 0
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Linear Codes – Receiver

(need more examples)

Repeat the operation at the sender (assume H is known):

If not 0 then an error has occurred. Ideally, the precise location of the
error can be found via: e = H−1s

Unfortunately, H not invertible so work-arounds are explained in the text

(How could we make H invertible and what would be the implications?)
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Joint Source-Channel Coding

Note competing goals between source and channel coding: source
coding removes bits to squeeze information into only the most
necessary bits, resulting in short, but delicate information, while
channel coding adds bits, yielding fat but robust information.
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Basics

A graph has nodes: A graph has edges:

A graph has cliques

(sets of pairwise

adjacent vertices):
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Basics

ω(H) is the size of the maximum clique of graph H

In a coloring, adjacent vertices receive different colors

χ(H) is the minimum number of colors needed

Clearly, χ(H) ≥ ω(H)
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Perfect graph

A graph G is perfect if χ(H) = ω(H) for every induced
subgraph of H

Definition: hole

A hole is a cycle of length at least four; its complement is an
antihole. A hole/antihole in G is an induced subgraph that is a
hole/antihole.

Graphs that are not perfect

Odd holes
Odd antiholes
Graphs that have an odd hole or odd antihole

S. F. Bush (www.research.ge.com/~bushsf) Coding Theory, INF 723

www.research.ge.com/~bushsf


What is Information?
Source Coding

Channel Coding
Video Coding

Quantum Data Compression

Noise and Channel Capacity
Hamming Codes
CRC
Linear Codes
Zero-error Information Theory
Rate Distortion

Examples of perfect graphs

Bipartite graphs (ω = 2 = χ)

and their complements

Line graphs of bipartite graphs

and their complements

96 known classes of perfect graphs
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Line graph

Definition: Line graph

The line graph L(G) of an
undirected graph G is a graph such
that

each vertex of L(G) represents
an edge of G; and

any two vertices of L(G) are
adjacent if and only if their
corresponding edges share a
common endpoint in G
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Perfect graph theorems

Theorem (The Perfect Graph Theorem (Lovász 1972))

graph is perfect ⇔ its complement is perfect.

Theorem (The Strong Perfect Graph Conjecture (Berge 1960))

A graph is perfect ⇔ it has no odd hole and no odd antihole
(“Berge graph”)
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Relation to zero-error information theory

Consider a discrete memoryless channel.

Elements of a finite alphabet Σ are transmitted, some pairs of
elements may be confused

Example

Let Σ = a, b, c , d , e. Assume that ab, bc , cd , de, ea may be
confused.
So a, c may be sent without confusion ⇒ 2n n-symbol error-free
messages.
But, ab, bd , ca, dc , ee are pairwise unconfoundable ⇒
5n/2 = 2( 1

2
log 5)n n-symbol error-free messages.
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Shannon capacity via graphs

Let V (G ) = Σ, where a, b are adjacent if unconfoundable

Definition:Shannon Capacity

C (G ) ≡ lim
n→∞

1

n
logω(Gn)

Gn is the graph cartesian product of the symbols

largest cliques is the largest unconfoundable group of symbols

We have ωn(G ) ≤ ω(Gn) ≤ χ(Gn) ≤ χn(G ) and so if
ω(G ) = χ(G ), then they determine C (G )

Lovász proved that C (C5) = 1
2 log 5, using geometric

representations of graphs (θ function)

C (G ) is unknown in general
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Perfect graphs are beautiful

Communication theory (related to Shannon capacity and
entropy)

Sorting

Polyhedral combinatorics

Radio channel assignment

Fundamental and deceptively simple-looking unsolved
problems
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Zero-error information theory

Traditional information theory provides coding theorems in
which a small, but greater than zero, probability of error is
tolerated

Zero-error information theory is concerned with asymptotically
achievable rates and capacities with a probability of error
strictly equal to zero

“The zero-error capacity of a noisy channel”, Shannon, 1956.

How many bits can we send over a discrete memoryless
channel with zero probability of error?
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Shannon capacity: A definition (1)

A discrete memoryless channel (DMC) is defined by a
conditional probability distribution of the form W (y |x)

It is given as a matrix, where the rows are indexed by
elements of X , and the columns by elements of Y

The definition is extended to n-vectors using the notation
W n(y |x)

Two sequences x ′ and x ′′ of size n of input variables are
distinguishable by a receiver iff the vectors W n(.|x ′) and
W n(.|x ′′) are orthogonal
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Shannon capacity: A definition (2)

N(W , n) is the maximum cardinality of a set of mutually
orthogonal vectors among the W n(.|x), x ∈ X n

The zero-error capacity of W is:

C0(W ) = lim sup
n→∞

1

n
log N(W , n)
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Characteristic graph

G = G (W ) is defined by a set of vertices V (G ) = X and a
set of edges E (G ) such that two symbols x ′ and x ′′ are
adjacent if they are distinguishable (i.e. there does not exist a
y such that W (y |x ′) > 0 and W (y |x ′′) > 0)

The definition is extended to vectors using the nth OR-power
Gn = G (W n) of G

More precisely, x ′, x ′′ ∈ E (Gn) if for at least one i the ith
coordinates of x ′ and x ′′ satisfy {x ′i , x ′′i } ∈ E (G )
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Graph product confusion

The tensor product G × H of graphs G and H is a graph such
that the vertex set of G × H is the Cartesian product
V (G )× V (H) and any two vertices (u, u′) and (v , v ′) are
adjacent in G × H if and only if u′ is adjacent with v ′ and u
is adjacent with v

The tensor product is also called the direct product,
categorical product, cardinal product, or Kronecker
product. It is also equivalent to the Kronecker product of the
adjacency matrices of the graphs

The notation G × H is also sometimes used to refer to the
Cartesian product of graphs, but more commonly refers to the
tensor product. The cross symbol shows visually the two
edges resulting from the tensor product of two edges
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Graph products

Cartesian

Tensor
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Noisy channels

Alphabet {u, v ,w ,m, n}
Largest safe subset: {u,m}
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But if we allow words...

Safe subset: {uu, nm,mv ,wn, vw}
Shannon capacity of G : C (G ) = lim

k→∞
k

√
α(G k)
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Reaching perfection...

C (G ) ≥ α(G )

For which graphs does C (G ) = α(G ) hold?

Which are the minimal graphs for which C (G ) > α(G )?

Sufficient for equality: G can be covered by α(G ) cliques.

α(G ) = χ(Ḡ )

S. F. Bush (www.research.ge.com/~bushsf) Coding Theory, INF 723

www.research.ge.com/~bushsf


What is Information?
Source Coding

Channel Coding
Video Coding

Quantum Data Compression

Noise and Channel Capacity
Hamming Codes
CRC
Linear Codes
Zero-error Information Theory
Rate Distortion

Convex hull

The convex hull of X can be described as the set of convex combinations
of points from X : that is, the set of points of the form

∑n
j=1 tjxj , where n

is an arbitrary natural number, the numbers tj are non-negative and sum
to 1, and the points xj are in X

So the convex hull Hconvex(X ) of set X is:

Hconvex(X ) =

{
k∑

i=1

αixi

∣∣∣∣∣ xi ∈ X , αi ∈ R, αi ≥ 0,
k∑

i=1

αk = 1, k = 1, 2, . . .

}
.

(1)

The convex hull is defined for any kind of objects made up of points in a
vector space, which may have any number of dimensions. The convex hull
of finite sets of points and other geometrical objects in a two-dimensional
plane or three-dimensional space are special cases of practical importance.
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Graph entropy

The characteristic vector of a stable set S of G is a vector
x ∈ {0, 1}|G |, for which xv = 1 iff v ∈ S

The vertex packing polytope VP(G ) of graph G is the convex
hull of the characteristic vectors of G

Theorem (Graph entropy)

The graph entropy of G with respect to a distribution
P = (p1, p2, ..., pn) on V (G ) is

H(G ,P) ≡ mina∈VP(G)

n∑
i=1

pi log
1

ai
.

S. F. Bush (www.research.ge.com/~bushsf) Coding Theory, INF 723

www.research.ge.com/~bushsf


What is Information?
Source Coding

Channel Coding
Video Coding

Quantum Data Compression

Noise and Channel Capacity
Hamming Codes
CRC
Linear Codes
Zero-error Information Theory
Rate Distortion

Rate Distortion

Ratedistortion theory gives theoretical bounds for how much
compression can be achieved (using lossy compression)

Many of the existing audio, speech, image, and video compression
techniques have transforms, quantization, and bit-rate allocation
procedures that capitalize on the general shape of ratedistortion
functions

Ratedistortion theory was created by Claude Shannon in his
foundational work on information theory

Rate is usually understood as the number of bits per data sample to
be stored or transmitted

In the most simple case (which is actually used in most cases),
distortion is defined as the variance of the difference between input
and output signal (i.e., the mean squared error of the difference)

Lossy compression techniques operate on data that will be perceived
by humans (music, pictures and video) the distortion measure
preferably should include aspects of human perception
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Rate Distortion

The functions that relate the rate and distortion are found as the
solution of the following minimization problem:

infQY |X (y |x) IQ(Y ;X ) subject to DQ ≤ D∗

QY |X X(y |x), sometimes called a test channel, is the conditional
probability density function (PDF) of the communication channel
output (compressed signal) X for a given input (original signal) X ,
and IQ(Y |X ) is the mutual information between Y and X defined as

I (Y ;X ) = H(Y )− H(Y |X )

where H(Y ) and H(Y |X ) are the entropy of the output signal Y
and the conditional entropy of the output signal given the input
signal, respectively:

H(Y ) =

∫ ∞

−∞
PY (y) log2(PY (y)) dy

H(Y |X ) =

∫ ∞

−∞

∫ ∞

−∞
QY |X (y |x)PX (x) log2(QY |X (y |x)) dx dy
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Rate Distortion

Can also be formulated as Distortion-Rate function, where we find
the supremum over achievable distortions for given rate constraint.
The relevant expression is:

infQY |X (y |x) E [DQ [X ,Y ]]subject to IQ(Y ;X ) ≤ R

The two formulations lead to functions which are inverses of each
other

The mutual information can be understood as a measure for prior
uncertainty the receiver has about the sender’s signal (H(Y )),
diminished by the uncertainty that is left after receiving information
about the sender’s signal (H(Y |X ))

The decrease in uncertainty is due to the communicated amount of
information, which is I (Y ;X )

As an example, in case there is no communication at all, then
H(Y |X ) = H(Y ) and I (Y ;X ) = 0

Alternatively, if the communication channel is perfect and the
received signal Y is identical to the signal X at the sender, then
H(Y |X ) = 0 and I (Y ;X ) = H(Y ) = H(X )
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Rate Distortion

In the definition of the ratedistortion function, DQ and D∗ are the
distortion between X and Y for a given QY |X (y |x) and the
prescribed maximum distortion, respectively

When we use the mean squared error as distortion measure, we have
(for amplitude-continuous signals):

DQ =

∫ ∞

−∞

∫ ∞

−∞
PX ,Y (x , y)(x − y)2 dx dy =∫ ∞

−∞

∫ ∞

−∞
QY |X (y |x)PX (x)(x − y)2 dx dy

As the above equations show, calculating a ratedistortion function
requires the stochastic description of the input X in terms of the
PDF PX (x), and then aims at finding the conditional PDF
QY |X (y |x) that minimize rate for a given distortion D∗
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Rate Distortion

These definitions can be formulated measure-theoretically to
account for discrete and mixed random variables as well

An analytical solution to this minimization problem is often difficult
to obtain except in some instances for which we next offer two of
the best known examples

The ratedistortion function of any source is known to obey several
fundamental properties, the most important ones being that it is a
continuous, monotonically decreasing convex (U) function and thus
the shape for the function in the examples is typical (even measured
ratedistortion functions in real life tend to have very similar forms)
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Rate Distortion

Although analytical solutions to this problem are scarce, there are
upper and lower bounds to these functions including the famous
Shannon lower bound (SLB), which in the case of squared error and
memoryless sources, states that for arbitrary sources with finite
differential entropy,

R(D) ≥ h(X )− h(D)

where h(D) is the entropy of a Gaussian random variable with
variance D. This lower bound is extensible to sources with memory
and other distortion measures

One important feature of the SLB is that it is asymptotically tight
in the high distortion regime for a wide class of sources and in some
occasions, it actually coincides with the ratedistortion function

Shannon Lower Bounds can generally be found if the distortion
between any two numbers can be expressed as a function of the
difference between the value of these two numbers
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Rate Distortion: Memoryless (independent) Gaussian
source

If we assume that PX (x) is Gaussian with variance σ2, and if we assume
that successive samples of the signal X are stochastically independent
(or, if your like, the source is memoryless, or the signal is uncorrelated),
we find the following analytical expression for the ratedistortion function:

R(D) =


1
2 log2(σ

2
x/D), if D ≤ σ2

x

0, if D > σ2
x
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Rate Distortion

Ratedistortion theory tell us that no compression system exists that
performs outside the gray area. The closer a practical compression
system is to the red (lower) bound, the better it performs

As a general rule, this bound can only be attained by increasing the
coding block length parameter. Nevertheless, even at unit
blocklengths one can often find good (scalar) quantizers that
operate at distances from the ratedistortion function that are
practically relevant

This ratedistortion function holds only for Gaussian memoryless
sources

It is known that the Gaussian source is the most “difficult” source
to encode: for a given mean square error, it requires the greatest
number of bits

The performance of a practical compression system working
onsayimages, may well be below the R(D) lower bound shownS. F. Bush (www.research.ge.com/~bushsf) Coding Theory, INF 723
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Video Coding Outline

Motion Estimation (skim)

DCT and Integer Transform (skim)

Quantization (skim)

Entropy Coding (important)
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Motion Estimation I

Motion Estimation (ME) is important since it can achieve
significant compression by exploiting temporal redundancy in
a video sequence
Unfortunately it is also the most computationally intensive
function of the encoding process
The image is divided into Macro-Blocks (MB) and for each
MB, a similar one is chosen in a reference frame, minimizing a
distortion measure
The best match found represents the predicted MB;
displacement from the original MB to the best match gives
the so-called Motion Vector (MV)
Only the MV and the residual (i.e. the difference between the
original MB and the predicted MB) need to be encoded and
transmitted
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The distortion measure is the Sum of Absolute Differences:
SAD(dx , dy ) =
N−1∑

m,n=0

|It(x + m, y + n)− It−k(x + dx + m, y + dy + n)|

(dx , dy ) represents the MV components, It(x , y) the
luminance value in frame t at coordinates (x , y)
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Motion Estimation

The amount of data to be coded can be reduced significantly
if the previous frame is subtracted from the current frame:
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Motion Estimation

Process 16x16 luminance samples at a time (“macroblock”)

Compare with neighboring areas in previous frame
Find closest matching area
prediction reference

Calculate offset between current macroblock and prediction
reference area

motion vector
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Motion Compensation

Subtract the reference area from the current macroblock
yielding a difference macroblock

Encode the difference macroblock with an image encoder

If motion estimation was effective little data left in difference
macroblock and more efficient compression
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DFT I

The sequence of N complex numbers x0, ..., xN−1 is
transformed into the sequence of N complex numbers
X0, ...,XN−1 by the DFT according to the formula:

Xk =
N−1∑
n=0

xne
− 2πi

N
kn k = 0, . . . ,N − 1

e is the base of the natural logarithm
i is the imaginary unit (i2 = −1)

Many of the properties of the DFT only depend on the fact

that e−
2πi
N is a primitive root of unity, sometimes denoted ωN

or WN (so that ωN
N = 1)

Such properties include the completeness, orthogonality,
Plancherel/Parseval, periodicity, shift, convolution, and
unitarity properties below, as well as many FFT algorithms
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DFT II

A simple description of these equations is that the complex
numbers Xk represent the amplitude and phase of the
different sinusoidal components of the input “signal” xn

The DFT computes the Xk from the xn, while the IDFT shows
how to compute the xn as a sum of sinusoidal components
Xk exp(2πikn/N)/N with frequency k/N cycles per sample

By writing the equations in this form, we are making extensive
use of Euler’s formula to express sinusoids in terms of complex
exponentials, which are much easier to manipulate
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DCT and Integer Transform

Transform each block of 8x8 samples into a block of 8× 8
spatial frequency coefficients

energy tends to be concentrated into a few significant
coefficients
other coefficients are close to zero and insignificant
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DCT and Integer Transform

Transform each block of 8x8 samples into a block of 8× 8
spatial frequency coefficients

Energy tends to be concentrated into a few significant
coefficients
Other coefficients are close to zero and insignificant

Xk1,k2 =

N1−1∑
n1=0

N2−1∑
n2=0

xn1,n2 cos

[
π

N1

(
n1 +

1

2

)
k1

]
cos

[
π

N2

(
n2 +

1

2

)
k2

]
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H.264 Transform

4x4 DCT of an input array X is given by:

Y = AXAT =


a a a a
b c −c −b
a −a −a a
c −b b −c

 X


a b a c
a c −a −b
a −c −a b
a −b a −c


where a = 1/2, b =

√
1/2 cos(π/8),c =

√
1/2 cos(3π/8)

Y = AXAT =
1 1 1 1
1 d −d −1
1 −1 −1 1
d −1 1 −d

 X


1 1 1 1
1 d −1 −1
1 −d −1 1
1 −1 1 −d

⊗


a2 ab a2 ab

ab b2 ab b2

a2 ab a2 ab

ab b2 ab b2


where a, b area already defined d = c/b ≈ 0.414 → −.5 and ⊗ indicates simple element-by-element

multiplication

To ensure the orthogonality, b is modified so that: a = 1/2,
b =

√
2/5, d = 1/2

S. F. Bush (www.research.ge.com/~bushsf) Coding Theory, INF 723

www.research.ge.com/~bushsf


What is Information?
Source Coding

Channel Coding
Video Coding

Quantum Data Compression

Motion Estimation
Transform
Quantization
Entropy Coding

Quantization

Divide each DCT coefficient by an integer, discard remainder

Result: loss of precision

Typically, a few non-zero coefficients are left
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Prepare for entropy coding

Encode each coefficient value as a (run,level) pair

run = number of zeros preceding value
level = non-zero value

Usually, the block data is reduced to a short sequence of
(run,level) pairs.

This is now easy to compress using an entropy encoder
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Entropy Coding

The efficiency of a compression method may be analyzed by considering
the distribution of the code values it produces

From Shannon’s information theory, we know that, if a coding method is
optimal, then the cumulative distribution of its code values has to be a
straight line from point (0, 0) to point (1, 1)
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Entropy Coding

The straight-line distribution
means that there is no
statistical dependence or
redundancy left in the
compressed sequences, and
consequently its code values
are uniformly distributed on
the interval [0, 1)

Essential for understanding
of how arithmetic coding
works

Code values are an integral
part of the arithmetic
encoding/decoding
procedures, with arithmetic
operations applied to real
numbers that are directly
related to code values
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Arithmetic Coding

The code value ν of a compressed data sequence is the real
number with fractional digits equal to the sequence’s symbols.
We can convert sequences to code values by simply adding
”0.” to the beginning of a coded sequence, and then
interpreting the result as a number in base-D notation, where
D is the number of symbols in the coded sequence alphabet

For example, if a coding method generates the sequence of
bits 0011000101100, then we have

Code sequence d = [0011000101100]
Code value ν = 0.00110001011002 = 0.19287109375

where the “2” subscript denotes base-2 notation
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Arithmetic Coding

This construction creates a convenient mapping between
infinite sequences of symbols from a D-symbol alphabet and
real numbers in the interval [0, 1), where any data sequence
can be represented by a real number, and vice-versa

S. F. Bush (www.research.ge.com/~bushsf) Coding Theory, INF 723

www.research.ge.com/~bushsf


What is Information?
Source Coding

Channel Coding
Video Coding

Quantum Data Compression

Motion Estimation
Transform
Quantization
Entropy Coding

Fundamentally, the arithmetic encoding process consists of
creating a sequence of nested intervals in the form
Φk(S) = [αk , βk), k = 0, 1, ...,N, where S is the source data
sequence, αk and βk are real numbers such that
0 ≤ αk < αk+1, and βk+1 ≤ βk ≤ 1

S. F. Bush (www.research.ge.com/~bushsf) Coding Theory, INF 723

www.research.ge.com/~bushsf


What is Information?
Source Coding

Channel Coding
Video Coding

Quantum Data Compression

Introduction to Quantum Mechanics
Quantum Mechanics
What is information?
Data Compression
Properties of Entropy
Communication and Noise

What is Quantum Mechanics?

It is a framework for the
development of physical
theories

It is not a complete
physical theory in its own
right

Consider the analogy

Quantum
Electrodynamics (QED) is
an example of “Specific
Rules”

Describes interaction of
electrons and photons

Quantum Mechanics
(QM) consists of four
mathematical postulates
which lay the ground rules
for our description of the
world.

S. F. Bush (www.research.ge.com/~bushsf) Coding Theory, INF 723

www.research.ge.com/~bushsf


What is Information?
Source Coding

Channel Coding
Video Coding

Quantum Data Compression

Introduction to Quantum Mechanics
Quantum Mechanics
What is information?
Data Compression
Properties of Entropy
Communication and Noise

How Successful is Quantum Mechanics?

It is unbelievably successful

Not just for the small stuff

QM crucial to explain why stars shine, how the Universe
formed, and the stability of matter

No deviations from quantum mechanics are known

Most physicists believe that any “theory of everything” will be
a quantum mechanical theory

The “measurement problem” remains to be clarified

Attempts to describe gravitation in the framework of quantum
mechanics have (so far) failed
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The Structure of Quantum Mechanics

Linear Algebra

We are all matrices

Dirac notation 〈ψ|,〈φ|,〈A〉
Four postulates of quantum mechanics

1 How to describe quantum states of a closed system; “State
vectors” and “state space”

2 How to describe quantum dynamics; “unitary evolution”
3 How to describe measurements of a quantum system;

“projective measurements”
4 How to describe quantum state of a composite system; “tensor

products”
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Example: qubits

Two level quantum
systems

Photons, electron spin,
nuclear spin, etc...

|0〉 and |1〉 are the
computational basis states

Two Level Quantum System

S. F. Bush (www.research.ge.com/~bushsf) Coding Theory, INF 723

www.research.ge.com/~bushsf


What is Information?
Source Coding

Channel Coding
Video Coding

Quantum Data Compression

Introduction to Quantum Mechanics
Quantum Mechanics
What is information?
Data Compression
Properties of Entropy
Communication and Noise

Cheat Sheet

z∗ Complex conjugate of the complex number z , (1 + i)∗ = 1− i
|ψ〉 Vector AKA ket
〈ψ| Vector dual to |ψ〉 AKA bra

〈φ |ψ〉 Inner product between the vectors |φ〉 and |ψ〉 (vector product)
|φ〉 ⊗ |ψ〉 Tensor product of the vectors |φ〉 and |ψ〉
|φ〉 |ψ〉 Alternative notation for tensor product

A∗ Complex conjugate of the A matrix
AT Transpose of the A matrix
A† Hermitian conjugate or adjoint of the A matrix, A† = (AT )∗[

a b
c d

]†
=

[
a∗ c∗

b∗ d∗

]
〈φ |A |ψ〉 Inner product between |φ〉 and A |ψ〉

Also, inner product between A† |φ〉 and |ψ〉
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Postulate 1: Rough Form

Associated to any quantum system is a complex vector space
known as state space.

The state of a closed quantum system is a unit vector in state
space.

Example: we will work mainly with qubits, which have state
space C 2.

α |0〉+ β |1〉 ≡
[
α
β

]
Quantum mechanics does not prescribe the state spaces of
specific systems, such as electrons. Thats the job of a
physical theory like quantum electrodynamics.
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Conventions

Vectors are written as |ψ〉 ≡ ψ̄

This is the ket notation

We will assume that our physical systems have finite
dimensional state spaces

|ψ〉 = α0 |0〉+ α1 |1〉+ α2 |2〉 . . . αd−1 |d − 1〉 =


α1

α2
...

αd−1


Qudit in Cd
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Dynamics: Quantum Logic Gates

X |0〉 = |1〉
X |1〉 = |0〉

Quantum NOT Gate

α |0〉+ β |1〉 →?
α |0〉+ β |1〉 → α |1〉+ β |0〉

Matrix representation

X =
|0〉 |1〉

|0〉 0 1
|1〉 1 0

General dynamics of a closed quantum system (including logic
gates) can be represented as a unitary matrix.
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Unitary Matrices

A =

[
a b
c d

]
Hermitian conjugation; taking the adjoint

A† = (A∗)T =

[
a∗ c∗

b∗ d∗

]
A is said to be unitary if AA† = A†A = I
We usually write unitary matrices as U

Example

XX † =

[
0 1
1 0

] [
0 1
1 0

]
=

[
1 0
0 1

]
= I
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Nomenclature

matrix = (linear) operator = (linear) transformation = (linear)
map = quantum gate (modulo unitarity)
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Postulate 2

The evolution of a closed quantum system is described by a unitary
transformation

|ψ′〉 = U |ψ〉

S. F. Bush (www.research.ge.com/~bushsf) Coding Theory, INF 723

www.research.ge.com/~bushsf


What is Information?
Source Coding

Channel Coding
Video Coding

Quantum Data Compression

Introduction to Quantum Mechanics
Quantum Mechanics
What is information?
Data Compression
Properties of Entropy
Communication and Noise

Why Unitaries?

Unitary maps are the only linear maps that preserve normalization
|ψ′〉 = U |ψ〉 implies ‖ |ψ′〉 ‖ = ‖U |ψ〉 ‖ = ‖ |ψ〉 ‖ = 1

Exercise

Prove for yourself that unitary evolution preserves normalization

S. F. Bush (www.research.ge.com/~bushsf) Coding Theory, INF 723

www.research.ge.com/~bushsf


What is Information?
Source Coding

Channel Coding
Video Coding

Quantum Data Compression

Introduction to Quantum Mechanics
Quantum Mechanics
What is information?
Data Compression
Properties of Entropy
Communication and Noise

Pauli Gates

X gate (AKA σx or σ1)
X |0〉 = |1〉, X |1〉 = |0〉,

X =

[
0 1
1 0

]
Y gate (AKA σy or σ2)
Y |0〉 = i |1〉, Y |1〉 = −i |0〉,

Y =

[
0 −i
i 0

]
Z gate (AKA σz or σ3)
Z |0〉 = |0〉, Z |1〉 = − |1〉,

Z =

[
1 0
0 −1

]
Notation: σ0 = I

Pauli Gates
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Exercise

Prove that XY = iZ

Exercise

Prove that X 2 = Y 2 = Z 2 = I
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Goals

Goal 1: Definitions and basic examples
Give definitions of the entropy, both classical and quantum,
and to work through some examples

Goal 2: To explain data compression
Explain data compression, both classical and quantum, and its
connection with entropy (data compression has some
extremely interesting connections with physics)

Goal 3: Other properties of entropy
Explain some of the basic properties of entropy, which has
application to entanglement, quantum error-correction, and
quantum communication (in last few lectures)

S. F. Bush (www.research.ge.com/~bushsf) Coding Theory, INF 723

www.research.ge.com/~bushsf


What is Information?
Source Coding

Channel Coding
Video Coding

Quantum Data Compression

Introduction to Quantum Mechanics
Quantum Mechanics
What is information?
Data Compression
Properties of Entropy
Communication and Noise

What is an information source?

We need a simple “toy model”
of an information source

The model might not be
realistic, but it should give rise
to a theory of information that
can be applied to realistic
situations
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Discrete iid sources

Definition: Each output from a
discrete information source
comes from a finite set

We will mostly be concerned
with the case where the
alphabet consists of 0 and 1

More generally, there is no loss of generality in supposing that the
alphabet is 0, . . . , n − 1

Independent and identically distributed – if each output from the source
is independent of other outputs from the source, and furthermore each
output has the same distribution
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Discrete iid sources

We will model sources using a
probability distribution for the
output of the source

Example

A sequence of coin tosses of a biased coin with probability p of heads, and
1− p of tails.

More generally, the distribution on alphabet of symbols is denoted

p0, p1, . . . , pn
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What other sources are discrete iid?

Most interesting sources are not:

“Sing, goddess, the rage of Achilles the son of Peleus, the
destructive rage that sent countless pains on the Achaeans...”

Reason: correlations
The reason is that most sources of information show correlations between
different outputs of the source. In English text, for example, certain letter
combinations, like “th” and “wh” appear far more frequently than you
would expect if the letters were all independent of one another

However, lots of sources can be approximated as iid - even with English
text this is not a bad approximation

Many sources can be described as stationary, ergodic sequences of
random variables, and similar results apply

Research problem

Find a good quantum analogue of “stationary, ergodic sources” for, and extend
quantum information theory to those sources. (Quantum
Shannon-Macmillan-Breiman theorem?)
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Shannon-Macmillan-Breiman

For an iid source Xk with random variable X and distribution
p(x):

−1

n
log p(X ) → H(X ) (2)

as n →∞ where Xk must be stationary

The Shannon-McMillan-Breiman Theorem:

Pr(− lim
n→∞

log Pr(X ) = H) = 1 (3)

if Xk is stationary and ergodic

A process is ergodic iff ‘time averages’ over a single realization of the process converge in mean square to the

corresponding ‘ensemble averages’ over many realizations.
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How can we quantify the rate at which information is
being produced by a source?

Two broad approaches

Axiomatic approach: Write down desirable axioms which a
measure of information “should” obey and find such a measure
(unfruitful)
Operational approach: Based on the “fundamental program”
of information science (more promising)
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Recall “the fundamental program”

The first step The first step of the program is to identify a physical process,
like energy, time, bits, space, or perhaps shared entangled
pairs, that can be used to do information processing

The second step The second step is to identify an information processing task.
In a classical context that might be something like data
compression. In both classical and quantum contexts it could
be information transmission

The third step The third step is to identify a criterion for successful
completion of the information processing task

The question Once we’ve done all three of these things we can ask the basic
question of information science, how much of 1 is needed to do
2, while satisfying 3?

How many bits are needed to store the output of the source so the output can

be reliably recovered?
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Historical origin of data compression

“He can compress
the most words into
the smallest ideas of
any man I ever met.”
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How a similar debate is playing out now with entanglement
measures

These philosophical issues regarding a definition of the
measure of information are similar to the debate now going on
in the research community about how to define measures of
the amount of entanglement present in a quantum state

Some people advocate an axiomatic approach, while others
advocate an operational approach, and still others are
advocating a combination of the approaches
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Data compression

What is the minimal value of
R that allows reliable
decompression?

We will define the minimal
value to be the information
content of the source

Theorem (Shannon’s noiseless channel coding theorem)

The minimal achievable value of R is given by the Shannon entropy

of the source distribution, H(X ) ≡ H(px) ≡ −
∑
x

px log(px)

where logarithms are taken to base two.
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Data compression

Suppose we flip coins, getting
heads with probability p, and
tails with probability 1− p

For large values of n, it is very
likely that we will get roughly
np heads, and n(1− p) tails

A typical sequence is one such
that the number of heads is
between np(1− ε) and
np(1 + ε)
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Data compression

x is the random variable for a
bit sequence

pnp(1+ε)(1− p)n(1−p)(1+ε) < Pr(x) < pnp(1−ε)(1− p)n(1−p)(1−ε)

Pr(x) ≈ 2np log p+n(1−p) log (1−p) ≈ 2−nH(p,1−p)

# typical sequence ≈ 2nH(p,1−p)
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Data compression: The algorithm

The two critical facts
Sequence is typical with probability → 1
# typical sequences ≈ 2nH(p,1−p)

In principle it is possible to construct a lookup table
containing an indexed list of all 2nH(p,1−p) typical sequences

Let y be the source output
If y is atypical then
send the bit 0 (n + 1 bits) and then the bit string y
else
send 1 and the index of y (nH(p, 1− p) + 1 bits) in the lookup
table

On average, only H(p, 1− p) bits were required to store the
compressed string, per use of the source
S. F. Bush (www.research.ge.com/~bushsf) Coding Theory, INF 723
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Variants on the data compression algorithm

Our algorithm is for large n, gives variable-length output that achieves
the Shannon entropy on average

The algorithm never makes an error in recovery

Algorithms for small n can be designed that do almost as well

Fixed-length compression

Let y be the source output
If y is atypical then
send (nH(p, 1− p) + 1) 0’s
else
send 1 and the index of y in the lookup table

Errors must always occur in a fixed-length scheme, but it does work with
probability approaching one

Such a scheme will only be able to distinguish between 2nR possible
source outputs, yet a source may have more than this number of possible
outputs, yet still have an entropy lower than R.S. F. Bush (www.research.ge.com/~bushsf) Coding Theory, INF 723
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Why it’s impossible to compress below the Shannon rate

Suppose R < H(p, 1− p) → Pr(no loss) ≤ 2n(R−H(p,1−p)) → 0

At most 2nR sequences can be correctly compressed and then
decompressed by a fixed-length scheme of rate R
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Basic properties of entropy

H(X ) ≡ H(px) ≡ −
∑

x

px log(px)

0 log 0 ≡ 0

If you take the limit of x log x as x goes to zero, you get zero
If letter of the alphabet occurs with probability zero, then
clearly the information content of that source should not be
affected by the presence or absence of the letter in the alphabet

The entropy is non-negative
and ranges between 0 and
log(d) where d is the number
of letters in the alphabet used
by the source

H(p) ≡ H(p, 1− p) is known

as the binary entropy

log2(2) = 1S. F. Bush (www.research.ge.com/~bushsf) Coding Theory, INF 723
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Recall Kolmogorov Complexity

When the minimum is obtained The minimum is obtained when
the source is producing just a single letter, over and
over again, with probability one (no need to compress
this information) - this string contains no information
at all, beyond its length

When the maximum is obtained The maximum is obtained when
the input distribution is completely uniform, that is,
we know nothing at all about potential biases in the
source
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Why’s this notion called entropy, anyway?

Close mathematical correspondence for the formula for the entropy that
Shannon gave, and the usual formula given in thermodynamics textbooks,
based on Ludwig Boltzmanns magnificent formulation of statistical
mechanics

From the American Heritage Book of English
Usage (1996):

“When the American scientist Claude Shannon found that the
mathematical formula of Boltzmann defined a useful quantity in
information theory, he hesitated to name this newly discovered
quantity entropy because of its philosophical baggage.

The mathematician John Von [sic] Neumann encouraged Shannon
to go ahead with the name entropy, however, since‘no one knows
what entropy is, so in a debate you will always have the advantage.”
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What else can be done with Shannon entropy?

1 Identify a physical resource -
energy, time, bits, space,
entanglement

2 Identify an information
processing task - data
compression, information
transmission, teleportation

3 Identify a criterion for success

4 How much of 1 do I need to
achieve 2, while satisfying 3?
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What else can be done with Shannon entropy?
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Reliable communication in the presence of noise

A binary symmetric channel

If a bit is input to the binary symmetric channel, then that bit is sent
through correctly with probability 1− p, and flipped to the incorrect value
with probability p
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General model of a noisy channel

The channel is described by
conditional probabilities p(y |x)

Example: for the binary

symmetric channel:

p(0|0) = 1− p
p(1|0) = p
p(0|1) = p
p(1|1) = 1− p
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Reliable communication in the presence of noise

Channel capacity ≡
maximal # of message bits that can be reliably sent

number of uses of channel
Mutual information

X → Y
H(X ,Y ) ≡ H(X ) +
H(Y )− H(X : Y )
(remove information
common to both)
H(X : Y ) ≡ H(X ) +
H(Y )− H(X ,Y ) (high
mutual information
means that we can
recover the original
material)

Shannon’s noisy channel coding theorem

The capacity of a noisy channel is given by the expression
capacity = max

px
H(X : Y ).
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What is a quantum information source?

Example: “Semiclassical coin toss”

|0〉 with probability 1
2

|1〉 with probability 1
2

Example: “Quantum coin toss”

|0〉 with probability 1
2

|0〉+|1〉√
2

with probability 1
2

Theorem (General definition)

A quantum information source produces states |ψj〉 with
probabilities pj .
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Quantum data compression

J ≡ (j1, . . . , jn)

pJ ≡ pJ1 × . . .× pJn

|ψJ〉 ≡ |ψj1〉 . . . |ψjn 〉

F̄ ≡
∑

J

pJF (|ψJ〉 , ρJ)

(Recall that
F ≡

√
〈ψJ | ρJ |ψJ〉)

F̄ → 1
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Whats the best possible rate for quantum data
compression?

(show why below... may need to introduce density matrix)

Example: “Semiclassical coin toss”
|0〉 with probability 1

2
|1〉 with probability 1

2
Answer: H( 1

2 ) = 1

Example: “Quantum coin toss”
|0〉 with probability 1

2
|0〉+|1〉√

2
with probability 1

2

Answer: H( 1
2 ) = 1? NO!

Answer: H( 1+1/
√

2
2 ) ≈ 0.6 (|0〉 appears with greater than 1

2
probability)

In general, we can do better than Shannon’s rate H(pj)
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