NETWORK INTRUSION

Information Security in Systems & Networks
Public Development Program

Sanjay Goel
University at Albany, SUNY
Fall 2006
Network Attacks
Learning Objectives

• Students should be able to:
 – Recognize different mechanisms for ARP Poisoning and Session Hijacking.
 – Identify vulnerabilities associated with these types of attacks.
 – Decide upon defenses to protect against these attacks.
Network Attacks

ARP

• Each node connected to the Ethernet LAN has two addresses MAC address & IP address

• MAC address is hardwired into the specific network interface card (NIC) of the node
 – MAC addresses are globally unique and with this address the Ethernet protocol sends the data back and forth.
 – Ethernet builds data frames that contain the MAC address of the source and destination computer.

• IP address is a virtual address and is assigned by software.
 – IP communicates by constructing packets which are different from frame structure.
 – These packets are delivered by the network layer (Ethernet) that splits the packets into frames, adds an Ethernet header and sends them to a network component.
Network Attacks

ARP

• IP and Ethernet work together. Packets are sent over Ethernets.
 – Ethernet devices do not understand the 32-bit IPv4 addresses.
 – They transmit Ethernet packets with 48-bit Ethernet addresses.

• An Ethernet frame is built from IP packet, but for the construction of Ethernet frame the MAC address of the destination computer is required.

• An IP driver must translate an IP destination address into an Ethernet destination address.
 – The Address Resolution Protocol (ARP) is used to determine these mappings.
 – For efficiency the ARP allows the address translation to be cached in the routers.
Network Attacks

ARP

• There is considerable risk here if untrusted nodes have write access to the local net. Such a machine could emit phony ARP queries or replies and divert all traffic to itself; it could then either impersonate some machines or simply modify the data streams *en passant*.

• This is called ARP *spoofing*
Network Attacks
ARP Poisoning

• In ARP poisoning the hacker updates the target computer’s ARP cache with a forged ARP request and reply packets in an effort to change the MAC address to one that the attacker can monitor.
 – Since ARP replies are forged, the target computer sends frames that were meant for the original destination to the attacker’s computer first so the frames can be read. A successful ARP attempt is invisible to the user.
Network Attacks

ARP Poisoning

- Static ARP table entries
 - Scalability Issues
 - Critical Machines Only
 - Separation of Servers and Workstations
 - Permanent not always permanent
 - RFC compliance

- Network Segmentation
 - Economic Factors
 - Added Complexity

- Attack Detection
 - Packet Anomalies
 - ARP Traffic Anomalies
 - Ethernet Fields\ARP fields do not match
 - Monitor for ARP Reply\Request matches
 - Monitor ARP traffic for abnormally high percentages of certain MAC addresses
Network Attacks
Session Hijacking: Definitions

• Definition: Hacker takes over an existing active session and exploits the existing trust relationship

• Process:
 – User makes a connection to the server by authenticating using his user ID and password.
 – After the user authenticates, the user has access to the server as long as the session lasts.
 – Hacker takes the user offline by denial of service
 – Hacker gains access to the user by impersonating the user

• Typical Behaviors: Attacker usually monitors the session, periodically injects commands into session and can launch passive and active attacks from the session.
Network Attacks

Session Hijacking: Process

- Bob telnets to Server
- Bob authenticates to Server
- Server
- Die!
- Hi! I am Bob

Protection:
- Use Encryption
- Use a secure protocol
- Limit incoming connections
- Minimize remote access
- Have strong authentication
Session Hijacking

Process

• Reliable Transport
 – At sending end file broken to packets
 – At receiving end packets assembled into files

• Sequence numbers are 32-bit counters used to:
 – Tell receiving machines the correct order of packets
 – Tell sender which packets are received and which are lost

• Receiver and Sender have their own sequence numbers
Session Hijacking

Process

• When two parties communicate the following are needed:
 – IP addresses
 – Port Numbers
 – Sequence Number

• IP addresses and port numbers are easily available
 – Hacker usually has to make educated guesses of the sequence number
 – Once attacker gets server to accept the guessed sequence number he can hijack the session.
Session Hijacking

Popular Programs

- **Juggernaut**
 - Network sniffer that can also be used for hijacking
 - Get from http://packetstorm.securify.com

- **Hunt**
 - Can be used to listen, intercept and hijack active sessions on a network

- **TTY Watcher**
 - Freeware program to monitor and hijack sessions on a single host
 - http://www.cerias.purdue.edu

- **IP Watcher**
 - Commercial session hijacking tool based on TTY Watcher
 - http://www.engrade.com
Session Hijacking Protection

- Use Encryption
- Use a secure protocol
- Limit incoming connections
- Minimize remote access
- Have strong authentication
Network Intrusions (Other)

Summary

• The network protocols were not designed with intrinsic security
 – Weaknesses in the protocols can be exploited to launch attacks

• Two attacks that have been discussed
 – ARP Attacks
 – Session Hijacking attacks