MALICIOUS CODE

Information Security in Systems & Networks Public Development Program

Sanjay Goel University at Albany, SUNY Fall 2006

Malicious Code Learning Objectives

- Students should be able to:
 - Understand terminology & architecture of malicious code
 - Identify different types of malicious code
 - Recognize propagation mechanisms for malicious code
 - Determine controls for protection against malicious code
 - Realize financial impact of viruses & worms
 - Use the spread rates to compute the potential damage due to virus attacks

Malicious Code Definition

- Malicious code –software that propagates through the network by exploiting weaknesses in software and protocols
- <u>Basic types:</u> Virus, Worm
- Variants of these basic types:
 - Trojan Horse
 - Time Bomb
 - Logic Bomb
 - Rabbit
 - Bacterium

Malicious Code Virus: Definition

- **Definition:** Malicious self-replicating software that attaches itself to other software.
- Typical Behavior:
 - Replicates within computer system, potentially attaching itself to every other program
 - <u>Behavior categories:</u> Innocuous, Humorous,
 Data altering, Catastrophic

Malicious Code Virus: Propagation

- Virus spreads by creating replica of itself and attaching itself to other executable programs to which it has write access.
 - True virus is NOT self-propagating and must be passed on to other users via e-mail, infected files/diskettes, programs or shared files
- Viruses normally consist of two parts:
 - **1. Replicator:** responsible for copying the virus to other executable programs.
 - 2. Payload: Action of the virus, which may be benign such as printing a message or malicious such as destroying data or corrupting the hard disk.

Malicious Code Virus:Process

- When a user executes an infected program (an executable file or boot sector), the replicator code typically executes first and then control returns to the original program, which then executes normally.
- Different types of viruses:
 - **Polymorphic viruses:** Viruses that modify themselves prior to attaching themselves to another program.
 - Macro Viruses: These viruses use an application macro language (e.g., VB or VBScript) to create programs that infect documents and template.

Malicious Code Categories & Prevention

- Vulnerabilities: All computers
- Common Categories:
 - Boot sector
 - Terminate and Stay Resident (TSR)
 - Application software
 - Stealth (or Chameleon) / Mutation engine
 - Network

• Prevention

- Limit connectivity
- Limit downloads
- Use only authorized media for loading data and software
- Enforce mandatory access controls.
- Viruses generally cannot run unless host application is running

Malicious Code Detection

- Changes in file sizes or date/time stamps
- Computer is slow starting or slow running
- Unexpected or frequent system failures
- Change of system date/time
- Low computer memory or increased bad blocks on disks

Malicious Code Detection Tools

- Scanner a program that looks for known viruses by checking for recognizable patterns usually called signatures
 - <u>Types:</u> Conventional scanner, command-line scanner, ondemand scanner
- Change Detectors programs that keep a database of the characteristics of all executable files on a system and check for changes which might signify an attack by an unknown virus.
 - <u>Types:</u> Check Summers & Integrity Checkers

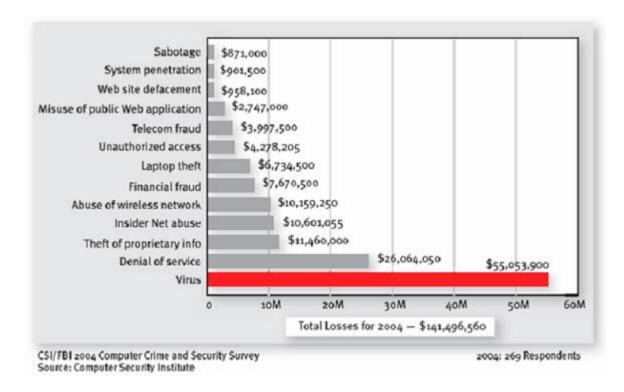
Cryptographic Check Summers
– use an encryption algorithm to
lessen the risk of being fooled by
a virus which targets that
particular check summer.

Malicious Code Detection Tools Cont'd.

- Monitor/Behavior Blocker - a TSR that monitors programs while they are running for behavior which might denote a virus.
- Heuristic Scanners scanners that inspect executable files for code using operations that might denote an unknown virus.

 TSR scanner - a TSR (memory-resident program) that checks for viruses while other programs are running. It may have some of the characteristics of a monitor and/or behavior blocker.

Worms: Definition


- **Worms** –self-replicating programs like that can automatically spread.
 - Stand-alone applications
 - Do not need a carrier program
 - Replicate by spawning copies of themselves.
 - More complex and harder to write than the virus programs.
- Vulnerabilities: Multitasking computers, especially those employing open network standards

Malicious Code: Worms and Variants Examples

- Internet Worm (1998)
 - First worm
 - Robert Morris Jr.
- ILOVEYOU worm (2000)
 - Automatically emailed itself to first 200 entries in Outlook address book
 - Spread to 10 million computers in two days before patch-release
 - Cost several billion dollars to repair the damage
- CodeRed, Nimbda, SirCam
 - Cost upwards of 500 million dollars in damages
- Anna Kournikova worm
 - Discovered August 2000
 - Became serious threat February 2001
 - Example of worm that took long time to spread

Malicious Code: Worms and Variants Examples

• According to the CSI/FBI 2004 Computer Crime and Security Survey, the highest amount of loss was associated with viruses.

Malicious Code: Worms and Variants Trojan Horse

- **Definition:** worm which pretends to be a useful program or virus purposely attached to a useful program prior to distribution
- **Typical Behaviors:** Same as virus or worm, but also can be used to send information back to or make information available to perpetrator
- Vulnerabilities:
 - Require user cooperation for executing their payload
 - Untrained users are vulnerable
- Prevention:
 - User training is best prevention (user cooperation allows Trojan Horses to bypass automated controls)
- **Detection:** Same as virus and worm

Malicious Code Other Variants

• Time Bomb

- A virus or worm designed to activate at a certain date/time
- Behavior same as virus or worm, but widespread throughout organization upon trigger date
- Time bombs are usually found before the trigger date
- Logic Bomb
 - A virus or worm designed to activate under certain conditions

• Detection & Prevention

- Correlate user problem reports to find patterns indicating possible bomb
- Run associated anti-viral software immediately as available

Malicious Code Variants

- Rabbit
 - A worm designed to replicate to the point of exhausting computer resources
- Bacterium
 - Malicious code that forces the operating system to consume more and more
 CPU cycles, resulting eventually in noticeable delay in user transactions
 - Older versions of operating systems are more vulnerable than newer versions since hackers have had more time to write Bacterium

• Detection

- Changes in OS file sizes, date/time stamps
- Computer is slow in running
- Unexpected or frequent system failures
- Prevention
 - Limit write privileges and opportunities to OS files
 - System administrators should work from non-admin accounts whenever possible.

Malicious Code Counter Measure: Anti Virus

- Scan files and identify malicious code using virus (or worm) signatures
- Signatures are byte patterns extracted from the code of known virus
- Heuristic/pattern analysis (suspicious behavior) is also employed
- Approach works for virus, worms, spyware and adware

Malicious Code Counter Measure: Firewall

- Classified based on different criteria
 - rule-based (filter based on ports, IP address, application, etc.)
 - hardware/software
 - network layer, application layer, application
 - personal, network based
 - stateless/stateful

Counter Measure: Anti-Sypware

- Scan for changes to registry, browser default
- Search/home page, cookies, OS files, installed
- programs....
- Real-time/offline
- Based on signatures/unauthorized modification to the system

Counter Measure: Intrusion Detection

- Software/hardware
- Based on network traffic or computer usage
- Includes senor, console and central engine
- Signature/anomaly based
- Network/host based
- Passive/reactive
- Together with firewall to form IPS
- Examples
 - Snort (Network), Tripwire (Host)

Summary

- Malicious code is software that spreads through networks that takes advantage of vulnerabilities in software code and protocols.
- Two major forms: worm and virus
- Viruses have two components a payload (exploit) and a replicator.
- Viruses need user intervention to spread.
- Worms are able to self-propagate throughout a network.
- Controls include anti-virus, proper firewall configuration, and various scanners.