MALICIOUS CODE

Information Security in Systems & Networks
Public Development Program

Sanjay Goel
University at Albany, SUNY
Fall 2006
Malicious Code
Learning Objectives

• Students should be able to:
 – Understand terminology & architecture of malicious code
 – Identify different types of malicious code
 – Recognize propagation mechanisms for malicious code
 – Determine controls for protection against malicious code
 – Realize financial impact of viruses & worms
 – Use the spread rates to compute the potential damage due to virus attacks
Malicious Code

Definition

- **Malicious code** — software that propagates through the network by exploiting weaknesses in software and protocols
- **Basic types:** Virus, Worm
- **Variants of these basic types:**
 - Trojan Horse
 - Time Bomb
 - Logic Bomb
 - Rabbit
 - Bacterium
Malicious Code

Virus: Definition

• **Definition:** Malicious self-replicating software that attaches itself to other software.

• **Typical Behavior:**
 – Replicates within computer system, potentially attaching itself to every other program
 – **Behavior categories:** Innocuous, Humorous, Data altering, Catastrophic
Malicious Code

Virus: Propagation

• Virus spreads by creating replica of itself and attaching itself to other executable programs to which it has write access.
 – True virus is NOT self-propagating and must be passed on to other users via e-mail, infected files/diskettes, programs or shared files.

• Viruses normally consist of two parts:
 1. **Replicator:** responsible for copying the virus to other executable programs.
 2. **Payload:** Action of the virus, which may be benign such as printing a message or malicious such as destroying data or corrupting the hard disk.
Malicious Code

Virus:Process

• When a user executes an infected program (an executable file or boot sector), the replicator code typically executes first and then control returns to the original program, which then executes normally.

• Different types of viruses:
 – **Polymorphic viruses**: Viruses that modify themselves prior to attaching themselves to another program.
 – **Macro Viruses**: These viruses use an application macro language (e.g., VB or VBScript) to create programs that infect documents and template.
Malicious Code
Categories & Prevention

• **Vulnerabilities:** All computers

• **Common Categories:**
 – Boot sector
 – Terminate and Stay Resident (TSR)
 – Application software
 – Stealth (or Chameleon) / Mutation engine
 – Network

• **Prevention**
 – Limit connectivity
 – Limit downloads
 – Use only authorized media for loading data and software
 – Enforce mandatory access controls.
 – Viruses generally cannot run unless host application is running
Malicious Code Detection

- Changes in file sizes or date/time stamps
- Computer is slow starting or slow running
- Unexpected or frequent system failures
- Change of system date/time
- Low computer memory or increased bad blocks on disks
Malicious Code Detection Tools

- **Scanner** - a program that looks for known viruses by checking for recognizable patterns usually called signatures
 - **Types:** Conventional scanner, command-line scanner, on-demand scanner

- **Change Detectors** - programs that keep a database of the characteristics of all executable files on a system and check for changes which might signify an attack by an unknown virus.
 - **Types:** Check Summers & Integrity Checkers

- **Cryptographic Check Summers**
 - use an encryption algorithm to lessen the risk of being fooled by a virus which targets that particular check summer.
Malicious Code
Detection Tools Cont’d.

- **Monitor/Behavior Blocker** - a TSR that monitors programs while they are running for behavior which might denote a virus.

- **TSR scanner** - a TSR (memory-resident program) that checks for viruses while other programs are running. It may have some of the characteristics of a monitor and/or behavior blocker.

- **Heuristic Scanners** - scanners that inspect executable files for code using operations that might denote an unknown virus.
Malicious Code

Worms: Definition

- **Worms** – self-replicating programs like that can automatically spread.
 - Stand-alone applications
 - Do not need a carrier program
 - Replicate by spawning copies of themselves.
 - More complex and harder to write than the virus programs.

- **Vulnerabilities**: Multitasking computers, especially those employing open network standards
Malicious Code: Worms and Variants

Examples

• Internet Worm (1998)
 – First worm
 – Robert Morris Jr.

• ILOVEYOU worm (2000)
 – Automatically emailed itself to first 200 entries in Outlook address book
 – Spread to 10 million computers in two days before patch-release
 – Cost several billion dollars to repair the damage

• CodeRed, Nimba, SirCam
 – Cost upwards of 500 million dollars in damages

• Anna Kournikova worm
 – Discovered August 2000
 – Became serious threat February 2001
 – Example of worm that took long time to spread
Malicious Code: Worms and Variants

Examples

• According to the CSI/FBI 2004 Computer Crime and Security Survey, the highest amount of loss was associated with viruses.
Malicious Code: Worms and Variants

Trojan Horse

• **Definition:** worm which pretends to be a useful program or virus purposely attached to a useful program prior to distribution

• **Typical Behaviors:** Same as virus or worm, but also can be used to send information back to or make information available to perpetrator

• **Vulnerabilities:**
 – Require user cooperation for executing their payload
 – Untrained users are vulnerable

• **Prevention:**
 – User training is best prevention (user cooperation allows Trojan Horses to bypass automated controls)

• **Detection:** Same as virus and worm
Malicious Code

Other Variants

• **Time Bomb**
 – A virus or worm designed to activate at a certain date/time
 – Behavior same as virus or worm, but widespread throughout organization upon trigger date
 – Time bombs are usually found before the trigger date

• **Logic Bomb**
 – A virus or worm designed to activate under certain conditions

• **Detection & Prevention**
 – Correlate user problem reports to find patterns indicating possible bomb
 – Run associated anti-viral software immediately as available
Malicious Code

Variants

• **Rabbit**
 – A worm designed to replicate to the point of exhausting computer resources

• **Bacterium**
 – Malicious code that forces the operating system to consume more and more CPU cycles, resulting eventually in noticeable delay in user transactions
 – Older versions of operating systems are more vulnerable than newer versions since hackers have had more time to write Bacterium

• **Detection**
 – Changes in OS file sizes, date/time stamps
 – Computer is slow in running
 – Unexpected or frequent system failures

• **Prevention**
 – Limit write privileges and opportunities to OS files
 – System administrators should work from non-admin accounts whenever possible.
Malicious Code
Counter Measure: Anti Virus

• Scan files and identify malicious code using virus (or worm) signatures
• Signatures are byte patterns extracted from the code of known virus
• Heuristic/pattern analysis (suspicious behavior) is also employed
• Approach works for virus, worms, spyware and adware
Malicious Code

Counter Measure: Firewall

- Classified based on different criteria
 - rule-based (filter based on ports, IP address, application, etc.)
 - hardware/software
 - network layer, application layer, application
 - personal, network based
 - stateless/stateful
Malicious Code

Counter Measure: Anti-Spyware

• Scan for changes to registry, browser default
• Search/home page, cookies, OS files, installed programs…
• Real-time/offline
• Based on signatures/unauthorized modification to the system
Malicious Code

Counter Measure: Intrusion Detection

- Software/hardware
- Based on network traffic or computer usage
- Includes sensor, console and central engine
- Signature/anomaly based
- Network/host based
- Passive/reactive
- Together with firewall to form IPS
- Examples
 - Snort (Network), Tripwire (Host)
Malicious Code

Summary

• Malicious code is software that spreads through networks that takes advantage of vulnerabilities in software code and protocols.
• Two major forms: worm and virus
• Viruses have two components a payload (exploit) and a replicator.
• Viruses need user intervention to spread.
• Worms are able to self-propagate throughout a network.
• Controls include anti-virus, proper firewall configuration, and various scanners.