Localized operations on T-equivariant oriented cohomology of projective homogeneous varieties

Kirill Zainoulline

University of Ottawa

2021

Moment graphs

[Goresky-Kottwitz-MacPherson, Invent. Math., 1998],
[Braden-MacPherson, Math. Ann., 2001],
[Fiebig, Adv. Math., 2008],
[Fiebig, J. Amer. Math. Soc., 2011]

Let Σ be a root system (also finite real non-crystallographic)

$$
\Sigma=\Sigma^{+} \amalg \Sigma^{-}
$$

By a moment graph \mathcal{G} with respect to Σ we call a directed labelled graph:

- Vertices are given by elements of some poset (V, \leq)
- Directed edges E are labelled by positive roots, i.e., we are given a label function $I: E \rightarrow \Sigma^{+}$(there are no multiple edges)
- The direction of edges respects the partial order, i.e., $v \rightarrow w \in E \Longrightarrow v \leq w, v \neq w$ (there are no directed cycles)

Example: Bruhat graphs

Consider the usual Bruhat poset (W, \leq), where W is the Weyl (Coxeter) group of Σ.

The data

$$
\begin{gathered}
(V, \leq):=(W, \leq), \\
E:=\left\{w \rightarrow s_{\alpha} w \mid w \leq s_{\alpha} w, w \in W, \alpha \in \Sigma^{+}\right\} \\
\text {and } \quad I\left(w \rightarrow s_{\alpha} w\right):=\alpha
\end{gathered}
$$

define a moment graph.
Observe that the transitive closure of E gives the Bruhat order ' \leq ' on W and E contains all cover relations of the Bruhat order.

One can also look at the parabolic case $\left(W^{P}, \leq\right)$ and... even at the double parabolic case ($W_{Q} \backslash W / W_{P}, \leq$).
R a commutative (graded) unital ring.

$$
x+F y=F(x, y) \in R[[x, y]]
$$

is a (one-dimensional) commutative formal group law over R if

$$
(x+F y)+F z=x+F(y+F z), \quad x+F y=y+F x, \quad x+F 0=x .
$$

Universal formal group law

$$
F_{U}(x, y)=x+y+\sum_{i, j \geq 1} a_{i j} x^{i} y^{j}, \quad \operatorname{deg} a_{i j}=1-i-j
$$

over the Lazard ring $\mathbb{L}=\mathbb{Z}\left\langle a_{i j}\right\rangle /($ relations of f.g.I.). So to give F / R is equivalent to give a (evaluation) map $\mathbb{L} \rightarrow R$.

- $F(x, y)=x+y$ (additive) over $R=\mathbb{Z}$
- $F(x, y)=x+y-\beta x y$ (multiplicative) over $\mathbb{Z}[\beta], \operatorname{deg} \beta=-1$.

Generalized structure algebra

[Fiebig, Adv. Math., 2008],
[Devyatov, Lanini, Z. Documenta, 2019]
F a formal group law over R
Λ any intermediate lattice between roots and weights of Σ

- Σ is crystallographic and F is any, or
- Σ is any (finite real) and F is additive (here Λ is a free module of finite rank over the coefficient ring of Σ)
$S:=S_{F}(\Lambda)=R\left[\left[x_{\lambda}\right]\right]_{\lambda \in \Lambda} /\left(x_{0}, x_{\mu+\lambda}=x_{\mu}+{ }_{F} x_{\lambda}\right)$ the formal group ring
$\mathcal{G}:=\left((V, \leq), I: E \rightarrow \Sigma^{+}\right)$a moment graph
The submodule of the free S-module $\bigoplus_{x \in V} S$

$$
\mathcal{Z}(\mathcal{G}, F):=\left\{\begin{array}{lll}
\sum_{v} z_{v} f_{v} & \text { s.t. } & \begin{array}{c}
z_{(v \rightarrow w)} \mid z_{v}-z_{w} \\
\forall v \rightarrow w \in E
\end{array}
\end{array}\right\}
$$

together with the coordinate-wise multiplication is called the (generalized) structure algebra of \mathcal{G} and F.

Equivariant generalized (oriented) theories

[Totaro, 1999]
[Heller-Malagon-Lopez, J. Reine Angew. Math. 2013], [Krishna,..]
[Karpenko, Mekurjev, 2020]

Let G be a split simple (not necessarily simply-connected) linear algebraic group over $k, \operatorname{char}(k)=0$, e.g.,

$$
S L_{n}, P G L_{n}, \text { Spin }_{n}, H \text { Spin }_{4 n}, \ldots
$$

Consider smooth G-varieties over k with G-equivariant maps as morphisms.
Let $h_{G}(-)$ be a G-equivariant algebraic oriented Borel-Moore homology theory obtained from $h(-)$ via the Borel construction, e.g.,

$$
C H_{G}(-), K_{G}(-), \Omega_{G}(-), C K_{G}(-), \ldots
$$

Quillen's formula

A key property of $h(-)$ and, hence, of $h_{G}(-)$ is that
It has characteristic classes which satisfy the Quillen formula for the tensor product of line bundles. Namely,

$$
c_{1}^{h}\left(\mathcal{L}_{1} \otimes \mathcal{L}_{2}\right)=c_{1}^{h}\left(\mathcal{L}_{1}\right)+F c_{1}^{h}\left(\mathcal{L}_{2}\right),
$$

where

- c_{1}^{h} is the first characteristic class in the theory $h(X)$,
- \mathcal{L}_{i} is a line bundle over X and
- $F(x, y) \in R[[x, y]]$ is the associated formal group law over $R=h(p t)$.

Correspondence

Given F over R define $h(-):=\Omega(-) \otimes_{\mathbb{L}} R$.
So there is
Formal group laws \longleftrightarrow Free oriented cohomology theories

$$
\begin{aligned}
& \text { Universal formal group law } \quad \longleftrightarrow \quad \text { algebraic cobordism } \Omega \\
& \qquad F(x, y)=x+y-\beta x y \quad \longleftrightarrow \quad \text { Connective } K \text {-theory } C K
\end{aligned}
$$

In particular,
$\beta=0$ corresponds to the Chow theory CH (usual singular cohomology)
$\beta=1$ corresponds to the usual K-theory

Geometric case

[Kostant, Kumar, 1986,1990]
[Bressler, Evans]
[Ganter, Ram] ...
[Calmès, Z., Zhong,..2019]

- Let G be a split reductive group over k. Let T be a split maximal torus in G and let T^{*} be its group of characters.
- Let h_{T} be a T-equivariant oriented cohomology theory corresponding to the formal group law F over $R=h(p t)$.
- Let \mathcal{G} be the Bruhat graph for the root system of (G, B) and $\mathcal{Z}(\mathcal{G}, F)$ be the structure algebra over $S=R\left[\left[T^{*}\right]\right]_{F}$.

Then

$$
h_{T}(p t)^{\wedge} \simeq S_{F}(\wedge) \text { and } h_{T}(G / B)^{\wedge} \simeq \mathcal{Z}(\mathcal{G}, F)
$$

- $C H_{T}(p t) \simeq \operatorname{Sym}\left(T^{*}\right) ; C H_{T}(G / B)^{\wedge} \simeq \mathcal{Z}(\mathcal{G}, x+y)$
- $K_{T}(p t) \simeq \mathbb{Z}\left[T^{*}\right] ; K_{T}(G / B)^{\wedge} \simeq \mathcal{Z}(\mathcal{G}, x+y-x y)$
- $C K_{T}(G / B)^{\wedge} \simeq \mathcal{Z}(\mathcal{G}, x+y-\beta x y)$

Riemann-Roch formalism
 [SGA6],..., [Panin, 2000]

Morphisms of generalized (oriented) cohomology theories are natural transformations

$$
\mathcal{F}: h_{1}(-) \rightarrow h_{2}(-)
$$

that preserve orientations \Longleftrightarrow characteristic (Euler) classes \Longleftrightarrow push-forward structures (perfect integrations).

Riemann-Roch for $\mathcal{F}: h_{1} \rightarrow h_{2} \Longleftrightarrow$ behaviour of \mathcal{F} with respect to push-forwards

Example: $h_{1}(-)=K(-)$ and $h_{2}(-)=C H(-, \mathbb{Q}), \mathcal{F}=c h$ is the Chern character.

Operations

```
Topology < 1990
```

[Voevodsky], [Vishik]: 1990-2010...
[Merkurjev, Vishik, 2020]

Given an oriented cohomology theory $h(-)$ denote by $\mathcal{E n d}(h)$ the ring of endomorphisms (natural transformations) preserving the orientation and call it the ring of operations on $h(-)$.

- $\mathcal{E} n d(\Omega)=\langle$ Landweber-Novikov operations \rangle,
- $\mathcal{E n d}(C K)=\langle$ Adams operations \rangle,
- $\mathcal{E n d}(C h)=\langle$ Chow traces of L.N. operations \rangle, where $\mathrm{Ch}(-):=C H(-; \mathbb{Z} / p \mathbb{Z})$ for a fixed prime p. (Reduced power operations and Steenrod operations appear as examples of the Chow traces.)

Goals

I. Describe these operations on $h(G / P)$ in combinatorial terms, e.g., acting on Schubert basis

Steenrod operations: [Duan-Zhao, Compositio, 2007]
Landweber-Novikov operations: [Calmès-Petrov-Z.,
Ann.Sci.Ec.Norm., 2013]
II. Extend these operations to the T-equivariant context, i.e., to $h_{T}(G / P)$ or, more generally, to $\mathcal{Z}(\mathcal{G}, F)$.

Shown in [Garibaldi-Petrov-Semenov, Duke, 2016] that the existence/use of such localized operations for Chow theory allows to compute the usual Reduced power/Steenrod operations more efficiently.

Extension to structure algebras

[Edidin, Graham, Duke, 2000]
[Anderson, Gonzales, Payne, 2019]

Using the functoriality of the formal group ring (with respect to morphisms of formal group laws) we first construct the operation $\mathfrak{C}_{p t}^{F}$ on the formal group ring.
We then take the direct sum $\mathfrak{C}^{F}=\oplus_{v} \mathfrak{C}_{v}^{F}$ of operations over all vertices $v \in V$ of the moment graph.

The key point is to prove that it respects the relations of the structure algebra:

Theorem.[Z., 2020] The direct sum \mathfrak{C}^{F} restricts to

$$
\mathfrak{C}^{F}: \mathcal{Z}(\mathcal{G}, F) \rightarrow \mathcal{Z}(\mathcal{G}, F) .
$$

Such operations are called localized operations.

Properties

- The localized operations commute with the equivariant characteristic map $c_{F}: S \rightarrow \mathcal{Z}(\mathcal{G}, F)$, i.e.

$$
c_{F} \circ \mathfrak{c}_{p t}^{F}=\mathfrak{C}^{F} \circ c_{F} .
$$

- Under the forgetful map $h_{T}(-) \rightarrow h(-)$ the localized operations restrict to the usual operations.

Hecke action

$Q:=S\left[\frac{1}{\text { char.classes }}\right], Q_{W}:=Q \otimes R[W]$, where W is the Weyl group Define the Hecke action of Q_{W} on the dual Q_{W}^{*} as follows:

$$
(z \bullet f)\left(z^{\prime}\right):=f\left(z^{\prime} z\right), \quad z, z^{\prime} \in Q_{W}, f \in Q_{W}^{*} .
$$

This action restricts to the action of the subalgebra of push-pull elements on the structure algebra $\mathcal{Z}=\mathcal{Z}(\mathcal{G}, F)=h_{T}(G / B)$.

The push-pull element Y_{α} acts on \mathcal{Z} as follows

$$
\begin{gathered}
Y_{\alpha} \bullet\left(\sum_{v} z_{v} f_{v}\right)=\sum_{v}\left(\kappa_{v(\alpha)} z_{v}+\Delta_{v(\alpha)}\left(z_{v}\right)\right) f_{v}, \\
\kappa_{v(\alpha)}=\frac{1}{x_{-v(\alpha)}}+\frac{1}{x_{v(}(\alpha)} \in S \text { and } \Delta_{v(\alpha)}\left(z_{v}\right)=\left(z_{s_{v}(\alpha) v}-z_{v}\right) / x_{v(\alpha)} \in S .
\end{gathered}
$$

Riemann-Roch type formula for the Hecke action

We say that F is of additive type if its formal inverse coincides with the usual additive inverse, i.e. $-{ }_{F} X=-x$.

Suppose $\phi: F_{1} / R_{1} \rightarrow F_{2} / R_{2}$ is a morphism of FGLs of additive type. Let $\mathfrak{C}:\left(h_{1}\right)_{T}(G / B) \rightarrow\left(h_{2}\right)_{T}(G / B)$ be the localized operation induced by ϕ.

Theorem [Z.]

$$
\operatorname{itd}_{\phi}\left(x_{\alpha}\right) \bullet \mathfrak{C}\left(Y_{\alpha} \bullet z\right)=Y_{\alpha} \bullet \mathfrak{C}(z), \quad \text { for all } z \in\left(h_{1}\right)_{T}(G / B)
$$

Algorithm to compute operations

The action of \mathfrak{C} on the Schubert basis $\left\{\zeta_{w}\right\}_{w}$ of $\left(h_{1}\right)_{T}(G / B)$ can be computed as follows:

- First one computes the matrix M expressing $\zeta_{l_{w}}$ as $\sum_{v} p_{v}{ }_{v} f_{v}$ of $\left(h_{1}\right)_{T}(G / B)$. For this one uses the inductive formulas involving push-pull operators.
- Then one computes $p_{v}=\mathfrak{C}\left(p_{v}^{I_{w}}\right)$ in S_{2} for each of the coordinates and obtains the element $x=\sum_{v} p_{v} f_{v}$ of $\left(h_{2}\right)_{T}(G / B)$.
- Finally, one finds the matrix M^{-1} and computes $\left(p_{v}\right)_{v} \cdot M^{-1}$, hence, expressing x in terms of the Schubert basis $\left\{\zeta_{I_{w}}\right\}_{w}$ in $\left(h_{2}\right)_{T}(G / B)$.

Adams operations

Following [Vishik, 2017] given $h(-)$, we define the integral Adams operations

$$
\Psi_{k}: h(-) \rightarrow h(-), \quad k \in \mathbb{Z}
$$

as the multiplicative operations corresponding to $k \cdot F-$.
Observe that for the K_{0} it gives the usual Adams operations and for the connective K-theory CK it gives the Adams operations studied in [Merkurjev-Vishik, 2020].

On $S=C K_{T}(p t)$ over $R=\mathbb{Z}[\beta]$ it is defined by

$$
\beta \Psi_{k}\left(x_{\lambda}\right)=\left(1-\left(1-\beta x_{\lambda}\right)^{k}\right), \quad \beta x_{\lambda}=\left(1-e^{\lambda}\right), \lambda \in \Lambda
$$

Example of computation for CK

Let $G=P G L_{3}$ be the adjoint simple group of type A_{2}. Then the root lattice $\Lambda=T^{*}$ has a basis $\Pi=\left\{\alpha_{1}, \alpha_{2}\right\}$ consisting of simple roots. We have $W=\left\langle s_{1}, s_{2}\right\rangle$ with $s_{1}\left(\alpha_{2}\right)=\alpha_{1}+\alpha_{2}$ and $\operatorname{dim} G / B=3$.

Suppose $F(x, y)=x+y-\beta x y$ is a multiplicative formal group law over $\mathbb{Z}[\beta]$ which corresponds to the connective K-theory. We then have $S=\mathbb{Z}[\beta][[\Lambda]]_{F}^{\wedge}$ and $S\left[\beta^{-1}\right] \simeq \mathbb{Z}\left[\beta^{ \pm 1}\right][\Lambda]^{\wedge}$ is the group ring of Λ, where $\beta x_{\lambda} \leftrightarrow 1-e^{-\lambda}$. Observe that $x_{\lambda}=c_{1}^{C K}(\mathcal{L}(\lambda))$ of the respective line bundle.

Consider the class $x_{\Pi}=x_{-\alpha_{1}} x_{-\alpha_{1}-\alpha_{2}} x_{-\alpha_{2}}$ so that $\beta^{3} x_{\Pi}=\left(1-e^{\alpha_{1}}\right)\left(1-e^{\alpha_{1}+\alpha_{2}}\right)\left(1-e^{\alpha_{2}}\right)$.

Applying the operators $Y_{\alpha_{i}}$'s to $[p t]=x_{\Pi} f_{1}$ we obtain the Schubert basis $\left\{\zeta_{w}\right\}_{w}$. In particular,

$$
\begin{aligned}
\zeta_{s_{1} s_{2}} & =Y_{\alpha_{2}} \bullet\left(Y_{\alpha_{1}} \bullet[p t]\right)=Y_{\alpha_{2}} \bullet\left(\frac{x_{\Pi}}{x_{-\alpha_{1}}}\left(f_{1}+f_{s_{1}}\right)\right) \\
& =x_{-\alpha_{1}-\alpha_{2}}\left(f_{1}+f_{s_{2}}\right)+x_{-\alpha_{2}}\left(f_{s_{1}}+f_{s_{1} s_{2}}\right) \in K_{T}^{1}(G / B) .
\end{aligned}
$$

We apply the Adams operation Ψ_{2} to the coefficients:

$$
\Psi_{2}\left(x_{-\alpha_{1}-\alpha_{2}}\right)=2 x_{-\alpha_{1}-\alpha_{2}}-\beta x_{-\alpha_{1}-\alpha_{2}}^{2} \text { and } \Psi_{2}\left(x_{-\alpha_{2}}\right)=2 x_{-\alpha_{2}}-\beta x_{-\alpha_{2}}^{2} .
$$

Hence,

$$
\begin{aligned}
\Psi_{2}\left(\zeta_{s_{1} s_{2}}\right) & =\left(2-\beta x_{-\alpha_{2}}\right) \zeta_{s_{1} s_{2}}+\beta\left(\beta x_{-\alpha_{2}}-1\right) \zeta_{s_{2}} \\
& =\left(1+e^{\alpha_{2}}\right) \zeta_{s_{1} s_{2}}-\beta e^{\alpha_{2}} \zeta_{s_{2}} .
\end{aligned}
$$

After applying the augmentation map $\left(e^{\lambda} \mapsto 1\right)$ we obtain

$$
\Psi_{2}\left(\zeta_{s_{1} s_{2}}\right)=2 \zeta_{s_{1} s_{2}}-\beta \zeta_{s_{2}} \in C K^{1}(G / B)
$$

Thank You!

