Localized operations on *T*-equivariant oriented cohomology of projective homogeneous varieties

Kirill Zainoulline

University of Ottawa

2021

▲冊▶▲■▶▲■▶ ■ のの⊙

Kirill Zainoulline University of Ottawa

Moment graphs

[Goresky-Kottwitz-MacPherson, Invent. Math., 1998],
[Braden-MacPherson, Math. Ann., 2001],
[Fiebig, Adv. Math., 2008],
[Fiebig, J. Amer. Math. Soc., 2011]

Let Σ be a root system (also finite real non-crystallographic)

 $\Sigma = \Sigma^+ \amalg \Sigma^-$

By a moment graph ${\mathcal G}$ with respect to Σ we call a directed labelled graph:

- Vertices are given by elements of some poset (V, \leq)
- Directed edges E are labelled by positive roots, i.e., we are given a label function $I: E \to \Sigma^+$ (there are no multiple edges)

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○ ● ● ●

• The direction of edges respects the partial order, i.e., $v \rightarrow w \in E \implies v \leq w, v \neq w$ (there are no directed cycles) Consider the usual Bruhat poset (W, \leq), where W is the Weyl (Coxeter) group of Σ .

The data

$$(V, \leq) := (W, \leq),$$

 $E := \{ w \to s_{\alpha} w \mid w \leq s_{\alpha} w, w \in W, \alpha \in \Sigma^+ \}$
and $I(w \to s_{\alpha} w) := \alpha$

define a moment graph.

Observe that the transitive closure of *E* gives the Bruhat order ' \leq ' on *W* and *E* contains all cover relations of the Bruhat order.

One can also look at the parabolic case (W^P, \leq) and... even at the double parabolic case $(W_Q \setminus W/W_P, \leq)$.

Formal group laws

R a commutative (graded) unital ring.

 $x +_F y = F(x, y) \in R[[x, y]]$

is a (one-dimensional) commutative formal group law over R if

$$(x +_F y) +_F z = x +_F (y +_F z), \quad x +_F y = y +_F x, \quad x +_F 0 = x.$$

Universal formal group law

$$F_U(x,y) = x + y + \sum_{i,j \ge 1} a_{ij} x^i y^j, \qquad \text{deg } a_{ij} = 1 - i - j$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

over the Lazard ring $\mathbb{L} = \mathbb{Z}\langle a_{ij} \rangle / (\text{relations of f.g.l.})$. So to give F/R is equivalent to give a (evaluation) map $\mathbb{L} \to R$.

•
$$F(x, y) = x + y$$
 (additive) over $R = \mathbb{Z}$

•
$$F(x,y) = x + y - \beta xy$$
 (multiplicative) over $\mathbb{Z}[\beta]$, deg $\beta = -1$.

Generalized structure algebra

[Fiebig, Adv. Math., 2008],

[Devyatov, Lanini, Z. Documenta, 2019]

F a formal group law over R

 Λ any intermediate lattice between roots and weights of Σ

- Σ is crystallographic and F is any, or
- Σ is any (finite real) and F is additive (here Λ is a free module of finite rank over the coefficient ring of Σ)

 $\begin{array}{l} S:=S_F(\Lambda)=R[[x_\lambda]]_{\lambda\in\Lambda}/(x_0,x_{\mu+\lambda}=x_\mu+_Fx_\lambda) \text{ the formal group ring} \\ \mathcal{G}:=((V,\leq),I\colon E\to\Sigma^+) \text{ a moment graph} \end{array}$

The submodule of the free *S*-module $\bigoplus_{x \in V} S$

$$\mathcal{Z}(\mathcal{G},F) := \begin{cases} \sum_{v} z_{v} f_{v} \text{ s.t. } \begin{aligned} z_{l(v \to w)} \mid z_{v} - z_{w} \\ \forall v \to w \in E \end{cases} \end{cases}$$

together with the coordinate-wise multiplication is called the (generalized) structure algebra of \mathcal{G} and $F_{a,b,c,d}$, where $F_{a,b,c,d}$ is the second structure of \mathcal{G} and $F_{a,b,c,d}$, where $\mathcal{G}_{a,b,c,d}$ is the second structure of \mathcal{G} and $F_{a,b,c,d}$.

Equivariant generalized (oriented) theories

[Totaro, 1999]

[Heller-Malagon-Lopez, J. Reine Angew. Math. 2013], [Krishna,..]

[Karpenko, Mekurjev, 2020]

Let G be a split simple (not necessarily simply-connected) linear algebraic group over k, char(k) = 0, e.g.,

 SL_n , PGL_n , $Spin_n$, $HSpin_{4n}$, ...

Consider smooth G-varieties over k with G-equivariant maps as morphisms.

Let $h_G(-)$ be a *G*-equivariant algebraic oriented Borel-Moore homology theory obtained from h(-) via the Borel construction, e.g.,

 $CH_G(-), K_G(-), \Omega_G(-), CK_G(-), \ldots$

A key property of h(-) and, hence, of $h_G(-)$ is that

It has characteristic classes which satisfy the Quillen formula for the tensor product of line bundles. Namely,

$$c_1^h(\mathcal{L}_1\otimes\mathcal{L}_2)=c_1^h(\mathcal{L}_1)+_Fc_1^h(\mathcal{L}_2),$$

where

- c_1^h is the first characteristic class in the theory h(X),
- \mathcal{L}_i is a line bundle over X and
- F(x, y) ∈ R[[x, y]] is the associated formal group law over R = h(pt).

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Given F over R define $h(-) := \Omega(-) \otimes_{\mathbb{L}} R$. So there is

Formal group laws \iff Free oriented cohomology theories

Universal formal group law \iff algebraic cobordism Ω

 $F(x, y) = x + y - \beta xy \quad \longleftrightarrow$ Connective K-theory CK

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 - のへで 8/21

In particular,

 $\beta=0$ corresponds to the Chow theory CH (usual singular cohomology)

 $\beta=1$ corresponds to the usual K-theory

Geometric case

[Kostant, Kumar, 1986,1990]

[Bressler, Evans] ...

[Ganter, Ram] ...

[Calmès, Z., Zhong,..2019]

- Let G be a split reductive group over k. Let T be a split maximal torus in G and let T* be its group of characters.
- Let h_T be a T-equivariant oriented cohomology theory corresponding to the formal group law F over R = h(pt).
- Let G be the Bruhat graph for the root system of (G, B) and Z(G, F) be the structure algebra over S = R[[T*]]_F.

Then

$$h_T(pt)^{\wedge} \simeq S_F(\Lambda)$$
 and $h_T(G/B)^{\wedge} \simeq \mathcal{Z}(\mathcal{G}, F).$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

9/21

- $CH_T(pt) \simeq Sym(T^*); CH_T(G/B)^{\wedge} \simeq \mathcal{Z}(\mathcal{G}, x+y)$
- $K_T(pt) \simeq \mathbb{Z}[T^*]; K_T(G/B)^{\wedge} \simeq \mathcal{Z}(\mathcal{G}, x + y xy)$
- $CK_T(G/B)^{\wedge} \simeq \mathcal{Z}(\mathcal{G}, x + y \beta xy)$

Morphisms of generalized (oriented) cohomology theories are natural transformations

$$\mathcal{F}\colon h_1(-)\to h_2(-)$$

that preserve orientations \iff characteristic (Euler) classes \iff push-forward structures (perfect integrations).

Riemann-Roch for $\mathcal{F} \colon h_1 \to h_2 \iff$ behaviour of \mathcal{F} with respect to push-forwards

Example: $h_1(-) = K(-)$ and $h_2(-) = CH(-, \mathbb{Q})$, $\mathcal{F} = ch$ is the Chern character.

Operations

Topology < 1990 [Voevodsky], [Vishik]: 1990-2010... [Merkurjev,Vishik, 2020]

Given an oriented cohomology theory h(-) denote by $\mathcal{E}nd(h)$ the ring of endomorphisms (natural transformations) preserving the orientation and call it the ring of operations on h(-).

- $\mathcal{E}nd(\Omega) = \langle$ Landweber-Novikov operations \rangle ,
- *End*(*CK*) = (Adams operations),
- €nd(Ch) = ⟨ Chow traces of L.N. operations⟩, where Ch(-) := CH(-; ℤ/pℤ) for a fixed prime p. (Reduced power operations and Steenrod operations appear as examples of the Chow traces.)

◆□▶ ◆□▶ ◆ ≧▶ ◆ ≧▶ ○ ≧ · つへで 11/21

I. Describe these operations on h(G/P) in combinatorial terms, e.g., acting on Schubert basis

Steenrod operations: [Duan-Zhao, Compositio, 2007] Landweber-Novikov operations: [Calmès-Petrov-Z., Ann.Sci.Ec.Norm., 2013]

II. Extend these operations to the *T*-equivariant context, i.e., to $h_T(G/P)$ or, more generally, to $\mathcal{Z}(\mathcal{G}, F)$.

Shown in [Garibaldi-Petrov-Semenov, Duke, 2016] that the existence/use of such localized operations for Chow theory allows to compute the usual Reduced power/Steenrod operations more efficiently.

<□ ▶ < @ ▶ < E ▶ < E ▶ E の Q @ 12/21

Extension to structure algebras

[Edidin, Graham, Duke, 2000] [Anderson, Gonzales, Payne, 2019]

Using the functoriality of the formal group ring (with respect to morphisms of formal group laws) we first construct the operation \mathfrak{C}_{pt}^{F} on the formal group ring. We then take the direct sum $\mathfrak{C}^{F} = \bigoplus_{v} \mathfrak{C}_{v}^{F}$ of operations over all vertices $v \in V$ of the moment graph.

The key point is to prove that it respects the relations of the structure algebra:

Theorem.[Z., 2020] The direct sum \mathfrak{C}^F restricts to

 $\mathfrak{C}^{\mathsf{F}}: \mathcal{Z}(\mathcal{G}, \mathsf{F}) \to \mathcal{Z}(\mathcal{G}, \mathsf{F}).$

Such operations are called localized operations.

• The localized operations commute with the equivariant characteristic map $c_F \colon S \to \mathcal{Z}(\mathcal{G}, F)$, i.e.

$$c_F \circ \mathfrak{C}_{pt}^F = \mathfrak{C}^F \circ c_F.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへで 14/21

Under the forgetful map h_T(−) → h(−) the localized operations restrict to the usual operations.

 $Q := S[\frac{1}{char.classes}], Q_W := Q \otimes R[W]$, where W is the Weyl group Define the Hecke action of Q_W on the dual Q_W^* as follows:

$$(z \bullet f)(z') := f(z'z), \quad z, z' \in Q_W, f \in Q_W^*.$$

This action restricts to the action of the subalgebra of push-pull elements on the structure algebra $\mathcal{Z} = \mathcal{Z}(\mathcal{G}, F) = h_T(G/B)$.

The push-pull element Y_{α} acts on \mathcal{Z} as follows

$$Y_{\alpha} \bullet (\sum_{v} z_{v} f_{v}) = \sum_{v} (\kappa_{v(\alpha)} z_{v} + \Delta_{v(\alpha)}(z_{v})) f_{v},$$

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 臣 のへで 15/21

$$\kappa_{\nu(\alpha)} = \frac{1}{x_{-\nu(\alpha)}} + \frac{1}{x_{\nu(\alpha)}} \in S \text{ and } \Delta_{\nu(\alpha)}(z_{\nu}) = (z_{s_{\nu(\alpha)}\nu} - z_{\nu})/x_{\nu(\alpha)} \in S.$$

We say that F is of additive type if its formal inverse coincides with the usual additive inverse, i.e. -Fx = -x.

Suppose $\phi: F_1/R_1 \to F_2/R_2$ is a morphism of FGLs of additive type. Let $\mathfrak{C}: (h_1)_T(G/B) \to (h_2)_T(G/B)$ be the localized operation induced by ϕ .

Theorem [Z.]

 $\operatorname{itd}_{\phi}(x_{\alpha}) \bullet \mathfrak{C}(Y_{\alpha} \bullet z) = Y_{\alpha} \bullet \mathfrak{C}(z), \quad \text{for all } z \in (h_1)_T(G/B).$

The action of \mathfrak{C} on the Schubert basis $\{\zeta_{I_w}\}_w$ of $(h_1)_T(G/B)$ can be computed as follows:

- First one computes the matrix *M* expressing ζ_{lw} as Σ_v p_v^{lw} f_v of (h₁)_T(G/B). For this one uses the inductive formulas involving push-pull operators.
- Then one computes p_v = 𝔅(p^{l_w}_v) in S₂ for each of the coordinates and obtains the element x = ∑_v p_v f_v of (h₂)_T(G/B).
- Finally, one finds the matrix M^{-1} and computes $(p_v)_v \cdot M^{-1}$, hence, expressing x in terms of the Schubert basis $\{\zeta_{I_w}\}_w$ in $(h_2)_T(G/B)$.

<□ ▶ < @ ▶ < E ▶ < E ▶ E の Q @ 17/21

Following [Vishik, 2017] given h(-), we define the integral Adams operations

$$\Psi_k \colon h(-) \to h(-), \quad k \in \mathbb{Z}$$

as the multiplicative operations corresponding to $k \cdot_F -$.

Observe that for the K_0 it gives the usual Adams operations and for the connective *K*-theory *CK* it gives the Adams operations studied in [Merkurjev-Vishik, 2020].

On $S = CK_T(pt)$ over $R = \mathbb{Z}[\beta]$ it is defined by

 $\beta \Psi_k(x_\lambda) = (1 - (1 - \beta x_\lambda)^k), \quad \beta x_\lambda = (1 - e^\lambda), \ \lambda \in \Lambda.$

<□ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ ○ Q @ 18/21

Let $G = PGL_3$ be the adjoint simple group of type A_2 . Then the root lattice $\Lambda = T^*$ has a basis $\Pi = \{\alpha_1, \alpha_2\}$ consisting of simple roots. We have $W = \langle s_1, s_2 \rangle$ with $s_1(\alpha_2) = \alpha_1 + \alpha_2$ and dim G/B = 3.

Suppose $F(x, y) = x + y - \beta xy$ is a multiplicative formal group law over $\mathbb{Z}[\beta]$ which corresponds to the connective *K*-theory. We then have $S = \mathbb{Z}[\beta][[\Lambda]]_F^{\wedge}$ and $S[\beta^{-1}] \simeq \mathbb{Z}[\beta^{\pm 1}][\Lambda]^{\wedge}$ is the group ring of Λ , where $\beta x_{\lambda} \leftrightarrow 1 - e^{-\lambda}$. Observe that $x_{\lambda} = c_1^{CK}(\mathcal{L}(\lambda))$ of the respective line bundle.

◆□ ▶ ◆□ ▶ ◆ ■ ▶ ◆ ■ ● ⑦ Q ◎ 19/21

Consider the class $x_{\Pi} = x_{-\alpha_1}x_{-\alpha_1-\alpha_2}x_{-\alpha_2}$ so that $\beta^3 x_{\Pi} = (1 - e^{\alpha_1})(1 - e^{\alpha_1+\alpha_2})(1 - e^{\alpha_2}).$

Applying the operators Y_{α_i} 's to $[pt] = x_{\Pi} f_1$ we obtain the Schubert basis $\{\zeta_w\}_w$. In particular,

$$\begin{aligned} \zeta_{s_1 s_2} &= Y_{\alpha_2} \bullet (Y_{\alpha_1} \bullet [pt]) = Y_{\alpha_2} \bullet (\frac{x_{\Pi}}{x_{-\alpha_1}} (f_1 + f_{s_1})) \\ &= x_{-\alpha_1 - \alpha_2} (f_1 + f_{s_2}) + x_{-\alpha_2} (f_{s_1} + f_{s_1 s_2}) \in \mathcal{CK}_T^1(\mathcal{G}/\mathcal{B}). \end{aligned}$$

We apply the Adams operation Ψ_2 to the coefficients:

$$\Psi_2(x_{-\alpha_1-\alpha_2}) = 2x_{-\alpha_1-\alpha_2} - \beta x_{-\alpha_1-\alpha_2}^2 \text{ and } \Psi_2(x_{-\alpha_2}) = 2x_{-\alpha_2} - \beta x_{-\alpha_2}^2.$$

Hence,

$$\begin{split} \Psi_2(\zeta_{s_1s_2}) &= (2 - \beta x_{-\alpha_2})\zeta_{s_1s_2} + \beta(\beta x_{-\alpha_2} - 1)\zeta_{s_2} \\ &= (1 + e^{\alpha_2})\zeta_{s_1s_2} - \beta e^{\alpha_2}\zeta_{s_2}. \end{split}$$

After applying the augmentation map $(e^{\lambda} \mapsto 1)$ we obtain

$$\Psi_2(\zeta_{s_1s_2})=2\zeta_{s_1s_2}-\beta\zeta_{s_2}\in CK^1(G/B).$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへで 20/21

Thank You!

< □ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ ○ Q @ 21/21

Kirill Zainoulline University of Ottawa