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Plane partitions

Consider the poset P =

A plane partition (of height ℓ) over P is a weakly
order-preserving map P → {0, 1, . . . , ℓ}
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Doppelgängers

Let ΛGr(k,n) =

n − kk

(rectangle)

Φ+
Bk,n

=

n − 2k + 1

n − 1

(trapezoid)

Theorem (Proctor, 1983)

For all ℓ, PP[ℓ]
!
ΛGr(k,n)

" ∼= PP[ℓ]
#
Φ+
Bk,n

$
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Combinatorial proof?

Proctor’s (1983) proof is non-bijective—uses rep theory of
sp2n(C)

For ℓ = 1, bijections were found by Stembridge (1986) and
Reiner (1997)

For ℓ = 2, a bijection was found by Elizalde (2015)

Theorem (Hamaker+Patrias+P+Williams 2020)

For all ℓ, explicit bijections PP[ℓ]
!
ΛGr(k,n)

" ∼= PP[ℓ]
#
Φ+
Bk,n

$
are

given via the combinatorics of K-theoretic Schubert calculus.
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Example bijection

Convert to increasing tableau:
0

11

1 →
0

11

1 →
1

33

4

K -jeu de taquin:

•
1

33

4

→

1

•
33

4

→

1

3

••
4

→

1

3

44

•

Convert back to PP:

1

3
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0

1
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→
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1
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The secret geometry

The ambient poset is ΛOG(n,2n), which describes the

Schubert decomposition of the orthogonal Grassmannian
OG(n, 2n) parametrizing isotropic n-planes in C2n.

The embedded trapezoid indexes a particular Schubert

variety Xw ↩→ OG(n, 2n)

The embedded rectangle indexes a particular

Richardson variety X v
u = Xu ∩ X v ↩→ OG(n, 2n)
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The secret geometry

These subvarieties determine classes in the K -theory ring of
algebraic vector bundles over OG(n, 2n)

The K -jeu de taquin (Thomas+Yong 2009) computes
products in K (OG(n, 2n))

The bijection of plane partitions turns out to be equivalent to
the statement

[Xw ] = [X v
u ] ∈ K (OG(n, 2n))

By work of Brion and Knutson, this is in turn equivalent to

[Xw ] = [X v
u ] ∈ A"(OG(n, 2n))

Which is equivalent to a bijection of linear extensions
(Haiman 1992)

Generalizes to other spaces. . .
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. . .such as

Let ΛOG(6,12) be the thick blue-circled nodes of

Let Φ+
H3

be the orange nodes

Corollary (Hamaker+Patrias+P+Williams 2020)

For all ℓ, explicit bijections PP[ℓ]
!
ΛOG(6,12)

" ∼= PP[ℓ]
#
Φ+
H3

$
are

given via the combinatorics of K-theoretic Schubert calculus.

Comes from analogous geometry on the E7 minuscule variety
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Thanks!

Thank you!!
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