Doppelgänger posets and the K-theory of flag varieties

Oliver Pechenik
University of Waterloo

AMS Spring Eastern Sectional Meeting
Special Session on
Recent Advances in Schubert Calculus and Related Topics March 2021

Based on joint work with
Zachary Hamaker (Florida), Rebecca Patrias (St. Thomas), and Nathan Williams (UT Dallas)

- Consider the poset $\mathcal{P}=\mathrm{O}_{\mathrm{O}}^{\mathrm{O}}$
- A plane partition (of height ℓ) over \mathcal{P} is a weakly order-preserving map $\mathcal{P} \rightarrow\{0,1, \ldots, \ell\}$

- Consider the poset $\mathcal{P}=$ ofo
- A plane partition (of height ℓ) over \mathcal{P} is a weakly order-preserving map $\mathcal{P} \rightarrow\{0,1, \ldots, \ell\}$

- Ex: Plane partitions of height 1 over \mathcal{P} :

$$
P^{[1]}(\mathcal{P})=\text { O }_{0}^{0} \text { (0) (0) (0) (0) (0) (1) (0) (1) (1) (1) (1) (1) }
$$

- Consider the poset $\mathcal{P}=\mathrm{O}_{\mathrm{O}}^{0}$
- A plane partition (of height ℓ) over \mathcal{P} is a weakly order-preserving map $\mathcal{P} \rightarrow\{0,1, \ldots, \ell\}$

- Ex: Plane partitions of height 1 over \mathcal{P} :
- Ex: Plane partitions of height 1 over $Q=\mathcal{O}_{0} 0$:

- Let $\Lambda_{\operatorname{Gr}(k, n)}$ (rectangle)
- $\Phi_{B_{k, n}}^{+}=$

(trapezoid)

Theorem (Proctor, 1983)

For all $\ell, \mathrm{PP}^{[\ell]}\left(\Lambda_{\mathrm{Gr}(k, n)}\right) \cong \mathrm{PP}^{[\ell]}\left(\Phi_{B_{k, n}}^{+}\right)$

- Proctor's (1983) proof is non-bijective-uses rep theory of $\mathfrak{s p}_{2 n}(\mathbb{C})$
- Proctor's (1983) proof is non-bijective—uses rep theory of $\mathfrak{s p}_{2 n}(\mathbb{C})$
- For $\ell=1$, bijections were found by Stembridge (1986) and Reiner (1997)
- Proctor's (1983) proof is non-bijective—uses rep theory of $\mathfrak{s p}_{2 n}(\mathbb{C})$
- For $\ell=1$, bijections were found by Stembridge (1986) and Reiner (1997)
- For $\ell=2$, a bijection was found by Elizalde (2015)
- Proctor's (1983) proof is non-bijective-uses rep theory of $\mathfrak{s p}_{2 n}(\mathbb{C})$
- For $\ell=1$, bijections were found by Stembridge (1986) and Reiner (1997)
- For $\ell=2$, a bijection was found by Elizalde (2015)

Theorem (Hamaker+Patrias+P+Williams 2020)

For all ℓ, explicit bijections $\mathrm{PP}^{[\ell]}\left(\Lambda_{\mathrm{Gr}(k, n)}\right) \cong \mathrm{PP}^{[\ell]}\left(\Phi_{B_{k, n}}^{+}\right)$are given via the combinatorics of K-theoretic Schubert calculus.

Convert to increasing tableau: $\underbrace{1)_{(1)}^{1}}_{0} \rightarrow \underbrace{(1)}_{0} \rightarrow$

Convert to increasing tableau: (1) $_{1)_{(1)}^{(1)} \rightarrow \underbrace{(1)}_{0}}^{(1)}$

Convert to increasing tableau:

- The ambient poset is $\Lambda_{\mathrm{OG}(n, 2 n)}$, which describes the

Schubert decomposition of the orthogonal Grassmannian OG $(n, 2 n)$ parametrizing isotropic n-planes in $\mathbb{C}^{2 n}$.

- The ambient poset
 is $\Lambda_{\mathrm{OG}(n, 2 n)}$, which describes the Schubert decomposition of the orthogonal Grassmannian OG $(n, 2 n)$ parametrizing isotropic n-planes in $\mathbb{C}^{2 n}$.
- The embedded trapezoid
 indexes a particular Schubert variety $X_{w} \hookrightarrow \mathrm{OG}(n, 2 n)$
- The ambient poset
 is $\Lambda_{\mathrm{OG}(n, 2 n)}$, which describes the Schubert decomposition of the orthogonal Grassmannian OG $(n, 2 n)$ parametrizing isotropic n-planes in $\mathbb{C}^{2 n}$.
- The embedded trapezoid
 indexes a particular Schubert variety $X_{w} \hookrightarrow \mathrm{OG}(n, 2 n)$
- The embedded rectangle

Richardson variety $X_{u}^{v}=X_{u} \cap X^{\vee} \hookrightarrow \mathrm{OG}(n, 2 n)$

- These subvarieties determine classes in the K-theory ring of algebraic vector bundles over $\mathrm{OG}(n, 2 n)$
- These subvarieties determine classes in the K-theory ring of algebraic vector bundles over $\mathrm{OG}(n, 2 n)$
- The K-jeu de taquin (Thomas+Yong 2009) computes products in $K(\mathrm{OG}(n, 2 n))$
- These subvarieties determine classes in the K-theory ring of algebraic vector bundles over OG $(n, 2 n)$
- The K-jeu de taquin (Thomas+Yong 2009) computes products in $K(\mathrm{OG}(n, 2 n))$
- The bijection of plane partitions turns out to be equivalent to the statement

$$
\left[X_{w}\right]=\left[X_{u}^{\vee}\right] \in K(\mathrm{OG}(n, 2 n))
$$

- These subvarieties determine classes in the K-theory ring of algebraic vector bundles over $\mathrm{OG}(n, 2 n)$
- The K-jeu de taquin (Thomas+Yong 2009) computes products in $K(\mathrm{OG}(n, 2 n))$
- The bijection of plane partitions turns out to be equivalent to the statement

$$
\left[X_{w}\right]=\left[X_{u}^{v}\right] \in K(\mathrm{OG}(n, 2 n))
$$

- By work of Brion and Knutson, this is in turn equivalent to

$$
\left[X_{w}\right]=\left[X_{u}^{\vee}\right] \in A^{\star}(\mathrm{OG}(n, 2 n))
$$

- These subvarieties determine classes in the K-theory ring of algebraic vector bundles over $\mathrm{OG}(n, 2 n)$
- The K-jeu de taquin (Thomas+Yong 2009) computes products in $K(\mathrm{OG}(n, 2 n))$
- The bijection of plane partitions turns out to be equivalent to the statement

$$
\left[X_{w}\right]=\left[X_{u}^{v}\right] \in K(\mathrm{OG}(n, 2 n))
$$

- By work of Brion and Knutson, this is in turn equivalent to

$$
\left[X_{w}\right]=\left[X_{u}^{v}\right] \in A^{\star}(\mathrm{OG}(n, 2 n))
$$

- Which is equivalent to a bijection of linear extensions (Haiman 1992)
- These subvarieties determine classes in the K-theory ring of algebraic vector bundles over $\mathrm{OG}(n, 2 n)$
- The K-jeu de taquin (Thomas+Yong 2009) computes products in $K(\mathrm{OG}(n, 2 n))$
- The bijection of plane partitions turns out to be equivalent to the statement

$$
\left[X_{w}\right]=\left[X_{u}^{v}\right] \in K(\mathrm{OG}(n, 2 n))
$$

- By work of Brion and Knutson, this is in turn equivalent to

$$
\left[X_{w}\right]=\left[X_{u}^{v}\right] \in A^{\star}(\mathrm{OG}(n, 2 n))
$$

- Which is equivalent to a bijection of linear extensions (Haiman 1992)
- Generalizes to other spaces. . .
- Let $\Lambda_{\mathrm{OG}(6,12)}$ be the thick blue-circled nodes of

- Let $\Phi_{H_{3}}^{+}$be the orange nodes
- Let $\Lambda_{\mathrm{OG}(6,12)}$ be the thick blue-circled nodes of

- Let $\Phi_{H_{3}}^{+}$be the orange nodes

Corollary (Hamaker+Patrias+P+Williams 2020)

For all ℓ, explicit bijections $\mathrm{PP}^{[\ell]}\left(\Lambda_{\mathrm{OG}(6,12)}\right) \cong \mathrm{PP}^{[\ell]}\left(\Phi_{H_{3}}^{+}\right)$are given via the combinatorics of K-theoretic Schubert calculus.

- Comes from analogous geometry on the E_{7} minuscule variety

Thank you!!

