Equivariant K-theory of the semi-infinite flag manifold as a nil-DAHA module

Daniel Orr

Virginia Tech

AMS Eastern Sectional Meeting March 21, 2021

[O.] arXiv:2001.03490
[Kouno-Naito-O.-Sagaki] arXiv:2008.10483
(Inverse) Chevalley formula in $K_{T}(G / B)$
$X(w)=\overline{B w B / B} \subset G / B$
$\mathcal{O}(\mu)=G \times{ }^{B} \mathbb{C}_{-\mu}$
$e^{\lambda} \in R(T)$
Chevalley formula [Pittie-Ram, Littelmann-Seshadri, Lenart-Postnikov, Griffeth-Ram]

$$
\left[\mathcal{O}_{X(w)}(\mu)\right]=\sum_{\substack{v \in W \\ \lambda \in P}} c_{w, v}^{\mu, \lambda} e^{\lambda} \cdot\left[\mathcal{O}_{X(v)}\right] \quad\left(c_{w, v}^{\mu, \lambda} \in \mathbb{Z}\right)
$$

Inverse Chevalley formula

$$
e^{\mu} \cdot\left[\mathcal{O}_{X(w)}\right]=\sum_{\substack{v \in W \\ \lambda \in P}} d_{w, v}^{\mu, \lambda}\left[\mathcal{O}_{X(v)}(\lambda)\right] \quad\left(d_{w, v}^{\mu, \lambda} \in \mathbb{Z}\right)
$$

These are one and the same

$$
c_{w, v}^{\mu, \lambda}=d_{w^{-1}, v^{-1}}^{-\mu,-\lambda}
$$

Groups and such

G simply-connected, simple algebraic group over \mathbb{C}
$G=\sqcup_{w \in W} B w B$
$B=T U \subset G$
$G((z))=G(\mathbb{C}((z)))$
$I=\operatorname{ev}_{0}^{-1}(B) \subset G \llbracket z \rrbracket=G(\mathbb{C} \llbracket z \rrbracket)$
$Q^{\vee}=T((z)) / T \llbracket z \rrbracket$
Iwasawa decomposition

$$
G((z))=\bigsqcup_{\substack{w \in W \\ \xi \in Q^{\vee}}} I \cdot w z^{\xi} \cdot U((z))
$$

Affine Weyl group

$$
w z^{\xi} \in W \ltimes Q^{\vee}=W_{\text {aff }}
$$

Semi-infinite flag manifold of G

Definition (at the level of points) [Feigin-Frenkel]

$$
\mathbf{Q}^{\text {rat }}=\frac{G((z))}{T(\mathbb{C}) \cdot U((z))}=\bigsqcup_{\substack{w \in W \\ \xi \in Q^{V}}} I \cdot\left[w z^{\xi}\right]
$$

[Finkelberg-Mirkovic]: $\mathbf{Q}^{\text {rat }}$ is an ind-infinite scheme, via Plücker embedding into $\prod_{\lambda \in P_{+}} \mathbb{P}(V(\lambda)((z)))$.

Semi-infinite Schubert varieties

For each $x=w z^{\xi} \in W_{\text {aff }}$, let $\mathbf{Q}(x)=\overline{I \cdot[x]}=\bigsqcup_{y \succeq x} I \cdot[y] \subset \mathbf{Q}^{\text {rat }}$.

- $\mathbf{Q}(x)$ infinite-dimensional and infinite-codimensional in $\mathbf{Q}^{\text {rat }}$
- $\succeq=$ semi-infinite Bruhat order/Lusztig's generic Bruhat order

Some sources of motivation for studying $Q^{\text {rat }}$

- Representations of affine Lie algebras [Feigin-Frenkel]
- Geometry of quasimaps $\mathbb{P}^{1} \rightarrow G / B$ [Drinfeld, Finkelberg-Mirkovic]
- Quantum K-theory of G / B [Braverman-Finkelberg, Kato]

$$
K_{T}\left(\mathbf{Q}^{\text {rat }}\right) \cong q K_{T}(G / B)_{\mathrm{loc}}
$$

(Kato's isomorphism)

- Peterson's isomorphism and its extension to K-theory [Peterson, Lam-Shimozono, Lam-Li-Mihalcea-Shimozono, Kato]
- Combinatorics of level-zero (quantum) affine algebra representations [Kato-Naito-Sagaki, Feigin-Makedonskyi, Lenart-Naito-Sagaki]
- Geometric realizations of integrable systems
- q-Toda [Givental-Lee, Braverman-Finkelberg]
- (q, t)-Macdonald [Koroteev-Zeitlin]

Equivariant K-theory

$\mathbf{Q}^{\text {rat }}$ is not Noetherian, which makes the usual approach to K-theory problematic.
[Kato-Naito-Sagaki] introduce $K_{I \rtimes \mathbb{C}^{*}}\left(\mathbf{Q}^{\text {rat }}\right)$ with good properties:

- Classes $[\mathcal{E}]$ for suitable quasi-coherent \mathcal{E}, including Schubert classes $\left[\mathcal{O}_{\mathbf{Q}(x)}\right]$ for $x \in W_{\text {aff }}$
- Multiplication by equivariant scalars $\mathbb{Z}[P]\left(\left(q^{-1}\right)\right) \supset R\left(I \rtimes \mathbb{C}^{\times}\right)$
- Multiplication by equivariant line bundles $[\mathcal{O}(\lambda)](\lambda \in P)$

Combinatorial Chevalley formulas: $\left[\mathcal{O}_{\mathbf{Q}(x)}(\mu)\right]$ into $e^{\lambda} \cdot\left[\mathcal{O}_{\mathbf{Q}(y)}\right]$

- μ dominant [Kato-Naito-Sagaki] infinite sums needed
- μ anti-dominant [Naito-O.-Sagaki] only finite sums
- μ arbitrary [Lenart-Naito-Sagaki]

What about inverse Chevalley? It's not the same!

nil-DAHA on the left

Let $\mathbb{H}_{q, 0}^{X}=\mathbb{Z}\left[q^{ \pm 1}\right]\left\langle X^{\mu}, D_{i} \mid \mu \in P, i \in I_{\text {aff }}\right\rangle / \sim$ be the nil-DAHA (double affine Hecke algebra).

Theorem [Kato-Naito-Sagaki]

The algebra $\mathbb{H}_{q, 0}^{X}$ acts on $K_{I \rtimes \mathbb{C}^{*}}\left(\mathbf{Q}^{\text {rat }}\right)$ from the left:

$$
\begin{aligned}
D_{i} \cdot\left[\mathcal{O}_{\mathbf{Q}(x)}\right] & = \begin{cases}{\left[\mathcal{O}_{\mathbf{Q}(x)}\right]} & \text { if } s_{i} x \succ x \\
{\left[\mathcal{O}_{\mathbf{Q}\left(s_{i} x\right)}\right]} & \text { if } s_{i} x \prec x\end{cases} \\
X^{\mu} \cdot\left[\mathcal{O}_{\mathbf{Q}(x)}\right] & =e^{-\mu} \cdot\left[\mathcal{O}_{\mathbf{Q}(x)}\right]
\end{aligned}
$$

Note: This action includes equivariant scalar multiplication.

Heisenberg on the right

Let \mathfrak{H} be the q-Heisenberg algebra generated by $x^{\lambda}(\lambda \in P), y^{\alpha}\left(\alpha \in Q^{\vee}\right)$ such that:

$$
x^{\lambda} y^{\alpha}=q^{\langle\lambda, \alpha\rangle} y^{\alpha} x^{\lambda} .
$$

Proposition (immediate from [Kato-Naito-Sagaki])

(1) The algebra \mathfrak{H} acts on $K_{I \rtimes \mathbb{C}^{*}}\left(\mathbf{Q}^{\text {rat }}\right)$ from the right:

$$
\begin{aligned}
& {\left[\mathcal{O}_{\mathbf{Q}(x)}(\mu)\right] \cdot x^{\lambda}=\left[\mathcal{O}_{\mathbf{Q}(x)}(\mu+\lambda)\right]} \\
& {\left[\mathcal{O}_{\mathbf{Q}(x)}(\mu)\right] \cdot y^{\alpha}=q^{\langle\alpha, \mu\rangle} \cdot\left[\mathcal{O}_{\mathbf{Q}\left(x z^{\alpha}\right)}(\mu)\right] .}
\end{aligned}
$$

(2) The classes $\left[\mathcal{O}_{\mathbf{Q}(w)}\right]$ for $w \in W$ generate a free \mathfrak{H}-submodule.

Observation

The actions of $\mathbb{H}_{q, 0}^{X}$ and \mathfrak{H} commute.

Free \mathfrak{H}-submodule is a bimodule

Theorem [O.] - assume G simply-laced
The \mathfrak{H}-submodule gen. by $\left\{\left[\mathcal{O}_{\mathbf{Q}(w)}\right]\right\}_{w \in W}$ is stable under nil-DAHA $\mathbb{H}_{q, 0}^{X}$. Equivalently, inverse Chevalley formula for $K_{I \rtimes \mathbb{C}^{*}}\left(\mathbf{Q}^{\text {rat }}\right)$ is finite (always).

Key Point: This gives $\mathbb{H}_{q, 0}^{X} \xrightarrow{\rho_{\text {geo }}} \operatorname{Mat}_{W}(\mathfrak{H})$.
Example: $G=S L(2)$
$\rho_{\text {geo }}\left(D_{1}\right)=\left(\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right) \quad \rho_{\text {geo }}\left(D_{0}\right)=\left(\begin{array}{cc}0 & 0 \\ y^{-\alpha^{\vee}} & 1\end{array}\right)$
$\rho_{\mathrm{geo}}\left(X^{-\omega}\right)=\left(\begin{array}{cc}x^{\omega} & x^{\omega} y^{\alpha^{\vee}} \\ -x^{\omega} & x^{-\omega}-x^{\omega} y^{\alpha^{\vee}}\end{array}\right)$
$e^{\omega} \cdot\left[\mathcal{O}_{\mathbf{Q}(e)}\right]=\left[\mathcal{O}_{\mathbf{Q}(e)}(\omega)\right]-\left[\mathcal{O}_{\mathbf{Q}(s)}(\omega)\right]$
Question
What are images $\rho_{\text {geo }}\left(X^{\mu}\right)$? These encode the inverse Chevalley formula.

(nil-)DAHA duality - assume G simply-laced

DAHA nil-DAHA's $\quad \mathbb{H}_{q, 0}^{X}, \mathbb{H}_{q, 0}^{Y}$
duality automorphism

(nil-)DAHA duality - assume G simply-laced

Theorem [0.]

There exists an explicit homomorphism $\rho_{\text {alg }}$ making this diagram commute.

- Explicit means: to compute $\rho_{\text {geo }}\left(X^{\mu}\right)$, we take a reduced expression in the extended affine Weyl group and then build/manipulate an operator in the polynomial representation of $\mathbb{H}_{q, t}$.
- For specific μ (e.g., minuscule) this leads to QBG-based inverse Chevalley formulas [Kouno-Naito-O.-Sagaki].
- For arbitrary μ, can show agreement with (inverse) Chevalley formula in $K_{T}(G / B)$ [Lenart-Postnikov] via truncation.

Example: $G=S L(n+1)$

Theorem [Kouno-Naito-O.-Sagaki]

For $1 \leq i \leq n+1$, the inverse Chevalley product $e^{\varepsilon_{i}} \cdot\left[\mathcal{O}_{\mathbf{Q}\left(w_{\circ}\right)}\right]$ is given by

$$
\begin{aligned}
& {\left[\mathcal{O}_{\mathbf{Q}\left(w_{\circ}\right)}\left(-\varepsilon_{i}\right)\right]-1_{\{i<n+1\}} \cdot q \cdot\left[\mathcal{O}_{\mathbf{Q}\left(w_{\circ} z^{\left.-w_{\circ}\left(\alpha_{i}\right)\right)}\right.}\left(-\varepsilon_{i+1}\right)\right]} \\
& \quad+\sum_{\varnothing \neq\left\{i_{1}<\cdots<i_{a}\right\} \subset\{1, \ldots, i-1\}}(-1)^{a}\left[\mathcal{O}_{\mathbf{Q}\left(\left(i_{1} \cdots i_{a} i\right)^{-1} w_{\circ} z^{-w_{\circ}\left(\alpha_{i_{1}, i}\right)}\right)}\left(-\varepsilon_{i}\right)\right] \\
& \quad+\sum_{\varnothing \neq\left\{j_{1}<\cdots<j_{b}\right\} \subset\{i+1, n+1\}}(-1)^{b-1} q \cdot\left[\mathcal{O}_{\mathbf{Q}\left(\left(i j_{1} \cdots j_{b}\right)^{-1} w_{\circ} z^{\left.-w_{\circ}\left(\alpha_{i, j}\right)\right)},\right.}\left(-\varepsilon_{j_{b}}\right)\right]
\end{aligned}
$$

where

$$
\mathbf{1}_{\{i<n+1\}}= \begin{cases}1 & \text { if } i<n+1 \\ 0 & \text { otherwise }\end{cases}
$$

Note: The class $\left[\mathcal{O}_{\mathbf{Q}\left(w_{\circ}\right)}\right]$ is an $\left(\mathbb{H}_{q, 0}^{X}, \mathfrak{H}\right)$-cyclic vector; hence this special case determines the entire inverse Chevalley formula.

