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(Inverse) Chevalley formula in KT (G/B)
X(w) = BwB/B ⊂ G/B
O(µ) = G×B C−µ
eλ ∈ R(T )
Chevalley formula [Pittie-Ram, Littelmann-Seshadri, Lenart-Postnikov, Griffeth-Ram]

[OX(w)(µ)] =
∑
v∈W
λ∈P

cµ,λw,v e
λ · [OX(v)] (cµ,λw,v ∈ Z)

Inverse Chevalley formula

eµ · [OX(w)] =
∑
v∈W
λ∈P

dµ,λw,v [OX(v)(λ)] (dµ,λw,v ∈ Z)

These are one and the same

cµ,λw,v = d−µ,−λ
w−1,v−1
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Groups and such

G simply-connected, simple algebraic group over C
G = tw∈WBwB
B = TU ⊂ G

G((z)) = G(C((z)))
I = ev−1

0 (B) ⊂ G[[z]] = G(C[[z]])
Q∨ = T ((z))/T [[z]]

Iwasawa decomposition

G((z)) =
⊔
w∈W
ξ∈Q∨

I · wzξ · U((z))

Affine Weyl group

wzξ ∈W nQ∨ =Waff
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Semi-infinite flag manifold of G

Definition (at the level of points) [Feigin-Frenkel]

Qrat =
G((z))

T (C) · U((z))
=
⊔
w∈W
ξ∈Q∨

I · [wzξ]

[Finkelberg-Mirkovic]: Qrat is an ind-infinite scheme, via Plücker
embedding into

∏
λ∈P+

P(V (λ)((z))).

Semi-infinite Schubert varieties

For each x = wzξ ∈Waff , let Q(x) = I · [x] =
⊔
y�x I · [y] ⊂ Qrat.

Q(x) infinite-dimensional and infinite-codimensional in Qrat

� = semi-infinite Bruhat order/Lusztig’s generic Bruhat order
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Some sources of motivation for studying Qrat

Representations of affine Lie algebras [Feigin-Frenkel]

Geometry of quasimaps P1 → G/B [Drinfeld, Finkelberg-Mirkovic]

Quantum K-theory of G/B [Braverman-Finkelberg, Kato]

KT (Q
rat) ∼= qKT (G/B)loc (Kato’s isomorphism)

Peterson’s isomorphism and its extension to K-theory
[Peterson, Lam-Shimozono, Lam-Li-Mihalcea-Shimozono, Kato]

Combinatorics of level-zero (quantum) affine algebra representations
[Kato-Naito-Sagaki, Feigin-Makedonskyi, Lenart-Naito-Sagaki]

Geometric realizations of integrable systems
I q-Toda [Givental-Lee, Braverman-Finkelberg]

I (q, t)-Macdonald [Koroteev-Zeitlin]
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Equivariant K-theory

Qrat is not Noetherian, which makes the usual approach to K-theory
problematic.

[Kato-Naito-Sagaki] introduce KIoC∗(Q
rat) with good properties:

Classes [E ] for suitable quasi-coherent E , including Schubert classes
[OQ(x)] for x ∈Waff

Multiplication by equivariant scalars Z[P ]((q−1)) ⊃ R(I oC×)
Multiplication by equivariant line bundles [O(λ)] (λ ∈ P )

Combinatorial Chevalley formulas: [OQ(x)(µ)] into eλ · [OQ(y)]

µ dominant [Kato-Naito-Sagaki] infinite sums needed

µ anti-dominant [Naito-O.-Sagaki] only finite sums

µ arbitrary [Lenart-Naito-Sagaki]

What about inverse Chevalley? It’s not the same!
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nil-DAHA on the left

Let HX
q,0 = Z[q±1]〈Xµ, Di | µ ∈ P, i ∈ Iaff〉 / ∼ be the nil-DAHA (double

affine Hecke algebra).

Theorem [Kato-Naito-Sagaki]

The algebra HX
q,0 acts on KIoC∗(Q

rat) from the left:

Di · [OQ(x)] =

{
[OQ(x)] if six � x
[OQ(six)] if six ≺ x

Xµ · [OQ(x)] = e−µ · [OQ(x)]

Note: This action includes equivariant scalar multiplication.
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Heisenberg on the right

Let H be the q-Heisenberg algebra generated by xλ (λ ∈ P ), yα (α ∈ Q∨)
such that:

xλyα = q〈λ,α〉yαxλ.

Proposition (immediate from [Kato-Naito-Sagaki])

1 The algebra H acts on KIoC∗(Q
rat) from the right:

[OQ(x)(µ)] · xλ = [OQ(x)(µ+ λ)]

[OQ(x)(µ)] · yα = q〈α,µ〉 · [OQ(xzα)(µ)].

2 The classes [OQ(w)] for w ∈W generate a free H-submodule.

Observation

The actions of HX
q,0 and H commute.
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Free H-submodule is a bimodule

Theorem [O.] – assume G simply-laced

The H-submodule gen. by {[OQ(w)]}w∈W is stable under nil-DAHA HX
q,0.

Equivalently, inverse Chevalley formula for KIoC∗(Q
rat) is finite (always).

Key Point: This gives HX
q,0 MatW (H).

ρgeo

Example: G = SL(2)

ρgeo(D1) =

(
1 1
0 0

)
ρgeo(D0) =

(
0 0

y−α
∨

1

)
ρgeo(X

−ω) =

(
xω xωyα

∨

−xω x−ω − xωyα∨
)

eω · [OQ(e)] = [OQ(e)(ω)]− [OQ(s)(ω)]

Question

What are images ρgeo(X
µ)? These encode the inverse Chevalley formula.
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(nil-)DAHA duality – assume G simply-laced

DAHA Hq,t = Q(q, t)〈Xλ, Tw, Y
µ | w ∈W,λ, µ ∈ P 〉 /∼

nil-DAHA’s HX
q,0 , HY

q,0

duality automorphism

Hq,t

HX
q,0 HY

q,0
φ
∼
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(nil-)DAHA duality – assume G simply-laced

HX
q,0 HY

q,0

KIoC∗(Q
rat) MatW (H)

ρgeo

φ

ρalg

Theorem [O.]

There exists an explicit homomorphism ρalg making this diagram commute.

Explicit means: to compute ρgeo(X
µ), we take a reduced expression

in the extended affine Weyl group and then build/manipulate an
operator in the polynomial representation of Hq,t.

For specific µ (e.g., minuscule) this leads to QBG-based inverse
Chevalley formulas [Kouno-Naito-O.-Sagaki].

For arbitrary µ, can show agreement with (inverse) Chevalley formula
in KT (G/B) [Lenart-Postnikov] via truncation.
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Example: G = SL(n+ 1)

Theorem [Kouno-Naito-O.-Sagaki]

For 1 ≤ i ≤ n+ 1, the inverse Chevalley product eεi · [OQ(w◦)] is given by

[OQ(w◦)(−εi)]− 1{i<n+1} · q · [OQ(w◦z−w◦(αi))
(−εi+1)]

+
∑

∅6={i1<···<ia}⊂{1,...,i−1}

(−1)a[O
Q((i1···iai)−1w◦z

−w◦(αi1,i))
(−εi)]

+
∑

∅6={j1<···<jb}⊂{i+1,n+1}

(−1)b−1q · [O
Q((ij1···jb)−1w◦z

−w◦(αi,jb ))
(−εjb)]

where

1{i<n+1} =

{
1 if i < n+ 1

0 otherwise.

Note: The class [OQ(w◦)] is an (HX
q,0,H)-cyclic vector; hence this special

case determines the entire inverse Chevalley formula.
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