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Based on:
P. Aluffi - M. - J. Schürmann - C. Su, Positivity of Segre-MacPherson classes,
arχiv:1902.00762, to appear in special volume dedicated to W. Fulton 80th birthday.
P. Aluffi - M. - J. Schürmann - C. Su, Shadows of characteristic classes, Verma
modules, and positivity of Chern-Schwartz-MacPherson classes of Schubert cells.,
arχiv:1709.07106.
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Euler characteristic

Let X be a compact manifold, TX tangent bundle. Consider the Chern class

c(TX ) = 1 + c1(TX ) + . . .+ cn(TX ).

The topological Euler characteristic of X may be calculated from the Gauss-Bonnet
Theorem:

cn(TX ) ∩ [X ] = χ(X)

Question: What happens if X is singular ?
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Constructible functions

Let X be an algebraic variety. Constructible functions:

F(X) = {
∑

ci 11Vi : ci ∈ Z,Vi ⊂ X constructible }.

If f : X → Y is a proper map, define a push-forward

f∗ : F(X)→ F(Y ); f∗(11V )(y) = χ(f −1(y) ∩ V ).

Example
If f : X → pt (proper), then

f∗(11X ) = χ(X),

the topological Euler characteristic of X .
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MacPherson’s transformation

Theorem (Deligne - Grothendieck Conjecture; MacPherson ’74, M. H. Schwartz
’65)
There exists a unique natural transformation c∗ : F(X)→ H∗(X) such that:

1 If X is projective, non-singular, c∗(11X ) = c(TX ) ∩ [X ].
2 c∗ is functorial with respect to proper push-forwards f : X → Y :

F(X) c∗−−−−−→ H∗(X)

f∗

y f∗

y
F(Y ) c∗−−−−−→ H∗(Y )

Constructible functions  characteristic classes of singular varieties:
ϕ = 11U (U ⊂ X constructible)  Chern-Schwartz-MacPherson (CSM) class

cSM(U) ∈ H∗(X).

If X -smooth, the Segre-MacPherson class is:

sM(U) = cSM(U)
c(TX ) .
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Examples

1 X = P1. Then

cSM(P1) = c(TP1 ) ∩ [P1] = [P1] + 2[pt]; sM(P1) = c(TP1 ) ∩ [P1]
c(TP1 ) = [P1].

2 cSM[pt] = [pt] and 11A1 = 11P1 − 11pt , thus

cSM(A1) = cSM(P1)− cSM(pt) = [P1] + [pt].

sM(A1) = cSM(P1)− cSM(pt)
[P1] + 2[pt] = [P1]− [pt].

3 CSM and SSM may be ‘different’:

cSM(A2) = [P2] + 2[P]1 + [pt].

sM(A2) = [P2]− [P]1 + [pt].
4 P. Aluffi: X -toric with open T -orbit X◦, then

cSM(X◦) = [X◦].

(Therefore χ(X◦) = 0 unless X◦ = pt.)
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Schubert data

The flag manifold is
Fl(n) = {F1 ⊂ F2 ⊂ . . . ⊂ Cn}.

It is homogeneous under G := GLn, and has finitely many B-orbits. (B:= Borel subgroup
of UT matrices.)

Schubert varieties: Xw are indexed by permutations w ∈ Sn, and

Xw = X◦w = Bew ; X w = X w,◦ = B−ew

where ew is T -fixed point and B− is the opposite Borel.
Schubert classes give a basis for homology:

H∗(Fl(n)) =
⊕
w∈Sn

[Xw ] =
⊕
w∈Sn

[X w ].

We will work with (co)homology of generalized flag manifolds such as Fl(i1, . . . , ik ; n), or
G/P.
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Demazure-Lusztig operators
For sk ∈W simple reflection let sk ∈ Aut(H∗(G/B)) (the right Weyl group action),
πk : Fl(n)→ Fl(k̂, n) (the projection) and

∂k = π∗k (πk )∗ = 1− sk

xk − xk+1

(the BGG operator). Define:
T ±k := ∂k ± sk

(degenerate Demazure - Lusztig operator). It appears in the study of the degenerate
Hecke algebra (Ginzburg, Lascoux-Leclerc-Thibon).

Lemma
The operators T ±k satisfy the following properties:

1 Commutativity: E.g. in type A, T ±i T
±

j = T ±j T
±

i if |i − j| ≥ 2;
2 Braid relations: E.g. in type A: T ±i T

±
i+1T

±
i = T ±i+1T

±
i T

±
i+1;

3 Square: (T ±i )2 = id.
4 Schubert action: T −k ([X(w)]) ={

−[Xw ] if `(wsk ) < `(w)
[Xwsk ] + [Xw ] +

∑
〈αk , β

∨〉[Xwsk sβ ] if `(wsk ) > `(w)

where β > 0, β 6= αk and `(wsk sβ) = `(w).
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CSM/SM classes and Cotangent Schubert Calculus
Theorem (Aluffi - M ’16, AMSS ’17)
Let X = G/B and w ∈W . Then the following hold:

1 Hecke action: T −i cSM(X◦w ) = cSM(X◦wsi ); T +
i sM(X◦w ) = sM(X◦wsi ).

2 Stable envelopes: Let stab±(w) ⊂ T ∗X be the Maulik-Okounkov stable envelope,
and let ι : X → T ∗X be the zero section. Then (Rimányi-Varchenko, AMSS)

ι∗stab+(w) = ±cSM(X◦w ); ι∗stab−(w) = ±sM(X◦w ).

3 Cotagent Schubert Calculus: Let Mw be the Verma module from and
Char(Mw ) ⊂ T ∗G/P its characteristic cycle. Then ι∗[Char(Mw )] = ±cSM(X◦w ).

4 Schubert basis: The CSM/SM classes deform the Schubert classes:

cSM(X◦w ) = [Xw ] +
∑
v<w

aw,v [Xw ].

5 Poincaré duality: 〈cSM(X◦u ), sM(X v,◦)〉 = δu,v .
6 Transversality (Schürmann): If sM(X u,◦) · sM(X v,◦) =

∑
cw

u,v sM(X w,◦) then

cw
u,v = χ(g1X u,◦ ∩ g2X v,◦ ∩ g3X◦w )

(topological Euler characteristic).
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Positivity

Theorem (Huh ’09 (Grassmannians); AMSS’17,’19)
Let X = G/P, and consider the Schubert expansions:

cSM(X◦w ) = [Xw ] +
∑
v<w

aw,v [Xw ]; sM(X◦w ) = [Xw ] +
∑
v<w

bw,v [Xw ].

Then aw,v ≥ 0 and (−1)`(w)−`(v)bw,v ≥ 0.

Alternation was conjectured by Feher-Rimányi ’17 for Grassmanians.

Conjecture
Consider the expansion

sM(X u,◦) · sM(X v,◦) =
∑

cw
u,v sM(X w,◦).

Then (−1)`(u)+`(v)+`(w)cw
u,v ≥ 0.

For k-step partial flag manifolds, k ≤ 3, this is proved (’21) by Knutson and Zinn-Justin
using puzzles. Their results extend to the KT version, utilizing motivic Segre classes
(Brasselet-Schürmann-Yokura ’05, recent calculations by Maxim-Schürmann,
Feher-Rimányi-Weber, AMSS, Anderson-Chen-Tarasca, . . .).
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The Lagrangian model and Segre classes
Let X complex, projective manifold and let C∗ act on T ∗X with character ~−1. Denote by
LC∗ (X) ⊂ HC∗

∗ (T ∗X ), the group of conic, Lagrangian cycles in T ∗X .

Example
If Y ⊂ X closed, irreducible, its conormal space is:

T ∗Y X := T ∗Y reg X ⊂ T ∗X .

The characteristic cycle map is:

CC : F(X)→ LC∗ (X); EuY 7→ (−1)dim Y [T ∗Y (X)],

where EuY (y) is MacPherson’s local Euler obstruction of Y at y .
If C ⊂ T ∗X is a cone, and q : P(T ∗X ⊕ 11)→ X is the projection, the Segre class is

Segre(C) := q∗
( [C ]

c(OP(T ∗
X⊕11)(−1))

)
= q∗(

∑
ı≥0

c1(OP(T ∗
X⊕11)(1))i ∩ [C ]) ∈ H∗(X).

Example
Segre(T ∗X ) = c(T ∗X )−1 ∩ [X ].
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Positivity
Theorem (Sabbah ’85, Ginzburg ’86, Pragacz-Parusinski ’01, Schürmann ’05)
For ϕ ∈ F(X), and let c∗(ϕ) = c0 + c1 + . . ., where ci ∈ Ai (X). Define
č∗(ϕ) = c0 − c1 + c2 − . . .. Then

c(T ∗X ) ∩ Segre(CC(ϕ)) = č∗(ϕ).

Equivalently,
Segre(CC(ϕ)) = č∗(ϕ)

c(T ∗X ) .

Lemma (Aluffi-M.-Schürmann-Su ’17)
Let ϕ = 11X◦

w . Then the following hold:
(a) (−1)`(w)CC(11X◦

w ) is effective.
(b) The Segre class (−1)`(w)Segre(CC(11X◦

w )) is an effective cycle in T ∗G/P .

Proof.
Part (a) follows because (−1)`(w)CC(11X◦

w ) is the characteristic cycle of a holonomic
DG/P -module (Brylinski-Kashiwara, Beilinson-Bernstein). Part (b) follows because TG/P
is globally generated, therefore so is OP(T ∗

X⊕11)(1). Then its powers preserve effective
cycles.
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Positivity (cont.)
Recall

(−1)`(w)Segre(CC(11X◦
w )) =

č∗(11X◦
w )

c(T ∗X ) ≥ 0.

Corollary
Let X = G/P.
(a) The Segre class

c∗(11X◦
w

)
c(TX ) is alternating.

(b) Let P = B. Then the CSM class cSM(X◦w ) is effective.
(c) For any X◦w ⊂ G/P, the CSM class cSM(X◦w ) is effective.

Proof.
Part (a) is a consequence of the previous Lemma.
Part (b) follows because CSM and SM classes for X◦w ⊂ G/B differ by changing
signs in homogeneous components (using the Hecke action).
Part (c) follows by functoriality of CSM classes.

Remark. The alternation of sM(U) holds for any affine inclusions U ↪→ X such that TX is
globally generated.
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THANK YOU!
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CSM classes in Gr(2, 5)
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Examples for Fl(3)

Recall that H∗(G/B) = ⊕w∈WZ[X(w)]. Then:

cSM(X(w)o) =
∑
v≤w

c(w ; v)[X(v)] = 1·[X(w)] + . . .+ 1·[pt].

Consider the flag variety Fl(3) = {F1 ⊂ F2 ⊂ C3}.
1 cSM(X(s1)◦) = T1(cSM[pt]) = (∂1 − s1)[pt] = [X(s1)] + [pt].

(Recall X(s1)◦ ' P1 \ pt.)
2 The CSM of the open Schubert cell cSM(Fl(3)o) = cSM(X(s1s2s1)◦) is:

[Fl(3)] + [X(s2s1] + [X(s1s2)] + 2[X(s1)] + 2[X(s2)] + [pt].

3 The total Chern class of Fl(3) is:

c(TFl(3)) =
∑
w∈S3

cSM(X(w)◦)

= [Fl(3)] + 2[X(s2s1)] + 2[X(s1s2)] + 6[X(s1)]+6[X(s2)] + 6[pt].
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