Positivity of Chern and Segre MacPherson classes

Leonardo Mihalcea (Virginia Tech)

Special Session on Recent Advances in Schubert Calculus and Related Topics AMS Brown

March 20, 2021

Based on:

- P. Aluffi M. J. Schürmann C. Su, *Positivity of Segre-MacPherson classes*, arχiv:1902.00762, to appear in special volume dedicated to W. Fulton 80th birthday.
- P. Aluffi M. J. Schürmann C. Su, Shadows of characteristic classes, Verma modules, and positivity of Chern-Schwartz-MacPherson classes of Schubert cells., arχiv:1709.07106.

Let X be a compact manifold, T_X tangent bundle. Consider the Chern class

$$c(T_X) = 1 + c_1(T_X) + \ldots + c_n(T_X).$$

The topological Euler characteristic of X may be calculated from the Gauss-Bonnet Theorem:

$$c_n(T_X)\cap [X]=\chi(X)$$

Question: What happens if X is singular ?

Constructible functions

Let X be an algebraic variety. Constructible functions:

$$\mathcal{F}(X) = \{\sum c_i \mathbb{1}_{V_i} : c_i \in \mathbb{Z}, V_i \subset X \text{ constructible } \}.$$

If $f: X \to Y$ is a proper map, define a push-forward

$$f_*:\mathcal{F}(X)
ightarrow \mathcal{F}(Y); \quad f_*(\mathbb{1}_V)(y) = \chi(f^{-1}(y) \cap V).$$

Example

If $f : X \rightarrow pt$ (proper), then

$$f_*(\mathbb{1}_X) = \chi(X),$$

the topological Euler characteristic of X.

MacPherson's transformation

Theorem (Deligne - Grothendieck Conjecture; MacPherson '74, M. H. Schwartz '65)

There exists a unique natural transformation $c_* : \mathcal{F}(X) \to H_*(X)$ such that:

- If X is projective, non-singular, $c_*(\mathbf{1}_X) = c(T_X) \cap [X]$.
- **2** c_* is functorial with respect to proper push-forwards $f: X \to Y$:

$$\begin{array}{ccc} \mathcal{F}(X) & \xrightarrow{-c_*} & H_*(X) \\ f_* & & f_* \\ \mathcal{F}(Y) & \xrightarrow{-c_*} & H_*(Y) \end{array}$$

Constructible functions ~> characteristic classes of singular varieties:

• $\varphi = \mathbb{1}_U (U \subset X \text{ constructible}) \rightsquigarrow \text{Chern-Schwartz-MacPherson (CSM) class}$

$$c_{\mathsf{SM}}(U) \in H_*(X).$$

• If X-smooth, the Segre-MacPherson class is:

$$s_{\mathsf{M}}(U) = \frac{c_{\mathsf{SM}}(U)}{c(T_X)}$$

Examples

•
$$X = \mathbb{P}^{1}$$
. Then
 $c_{SM}(\mathbb{P}^{1}) = c(T_{\mathbb{P}^{1}}) \cap [\mathbb{P}^{1}] = [\mathbb{P}^{1}] + 2[pt]; \quad s_{M}(\mathbb{P}^{1}) = \frac{c(T_{\mathbb{P}^{1}}) \cap [\mathbb{P}^{1}]}{c(T_{\mathbb{P}^{1}})} = [\mathbb{P}^{1}].$
• $c_{SM}[pt] = [pt] \text{ and } \mathbf{1}_{\mathbb{A}^{1}} = \mathbf{1}_{\mathbb{P}^{1}} - \mathbf{1}_{pt}, \text{ thus}$
 $c_{SM}(\mathbb{A}^{1}) = c_{SM}(\mathbb{P}^{1}) - c_{SM}(pt) = [\mathbb{P}^{1}] + [pt].$
 $s_{M}(\mathbb{A}^{1}) = \frac{c_{SM}(\mathbb{P}^{1}) - c_{SM}(pt)}{[\mathbb{P}^{1}] + 2[pt]} = [\mathbb{P}^{1}] - [pt].$

SM and SSM may be 'different':

$$\begin{split} c_{\mathsf{SM}}(\mathbb{A}^2) &= [\mathbb{P}^2] + 2[\mathbb{P}]^1 + [pt].\\ s_{\mathsf{M}}(\mathbb{A}^2) &= [\mathbb{P}^2] - [\mathbb{P}]^1 + [pt]. \end{split}$$

9 P. Aluffi: X-toric with open T-orbit X° , then

$$c_{\mathsf{SM}}(X^\circ) = [\overline{X^\circ}].$$

(Therefore $\chi(X^\circ) = 0$ unless $X^\circ = pt$.)

Schubert data

The flag manifold is

$$\operatorname{Fl}(n) = \{F_1 \subset F_2 \subset \ldots \subset \mathbb{C}^n\}.$$

It is homogeneous under $G := GL_n$, and has finitely many *B*-orbits. (*B*:= Borel subgroup of UT matrices.)

• Schubert varieties: X_w are indexed by permutations $w \in S_n$, and

$$X_w = \overline{X_w^\circ} = \overline{Be_w}; \quad X^w = \overline{X^{w,\circ}} = \overline{B^-e_w}$$

where e_w is *T*-fixed point and B^- is the opposite Borel.

• Schubert classes give a basis for homology:

$$H_*(\operatorname{Fl}(n)) = \bigoplus_{w \in S_n} [X_w] = \bigoplus_{w \in S_n} [X^w].$$

We will work with (co)homology of generalized flag manifolds such as $Fl(i_1, \ldots, i_k; n)$, or G/P.

Demazure-Lusztig operators

For $s_k \in W$ simple reflection let $s_k \in Aut(H^*(G/B))$ (the right Weyl group action), $\pi_k : \operatorname{Fl}(n) \to \operatorname{Fl}(\widehat{k}, n)$ (the projection) and

$$\partial_k=\pi_k^*(\pi_k)_*=rac{1-s_k}{x_k-x_{k+1}}$$

(the BGG operator). Define:

$$\mathcal{T}_k^{\pm} := \partial_k \pm s_k$$

(degenerate Demazure - Lusztig operator). It appears in the study of the degenerate Hecke algebra (Ginzburg, Lascoux-Leclerc-Thibon).

Lemma

The operators \mathcal{T}_k^{\pm} satisfy the following properties:

- **Ocean** Commutativity: E.g. in type A, $\mathcal{T}_i^{\pm}\mathcal{T}_j^{\pm} = \mathcal{T}_j^{\pm}\mathcal{T}_i^{\pm}$ if $|i-j| \ge 2$;
- **3** Braid relations: E.g. in type A: $\mathcal{T}_i^{\pm} \mathcal{T}_{i+1}^{\pm} \mathcal{T}_i^{\pm} = \mathcal{T}_{i+1}^{\pm} \mathcal{T}_i^{\pm} \mathcal{T}_{i+1}^{\pm}$;
- Square: $(\mathcal{T}_i^{\pm})^2 = id$.
- Schubert action: $\mathcal{T}_k^-([X(w)]) =$

$$\begin{cases} -[X_w] & \text{if } \ell(ws_k) < \ell(w) \\ [X_{ws_k}] + [X_w] + \sum \langle \alpha_k, \beta^{\vee} \rangle [X_{ws_k s_\beta}] & \text{if } \ell(ws_k) > \ell(w) \end{cases}$$

where $\beta > 0$, $\beta \neq \alpha_k$ and $\ell(ws_k s_\beta) = \ell(w)$.

CSM/SM classes and Cotangent Schubert Calculus

Theorem (Aluffi - M '16, AMSS '17)

Let X = G/B and $w \in W$. Then the following hold:

- Hecke action: $\mathcal{T}_i^- c_{SM}(X_w^\circ) = c_{SM}(X_{ws_i}^\circ)$; $\mathcal{T}_i^+ s_M(X_w^\circ) = s_M(X_{ws_i}^\circ)$.
- **3** Stable envelopes: Let $stab_{\pm}(w) \subset T_X^*$ be the Maulik-Okounkov stable envelope, and let $\iota : X \to T^*X$ be the zero section. Then (Rimányi-Varchenko, AMSS)

$$\iota^* stab_+(w) = \pm c_{SM}(X^\circ_w); \quad \iota^* stab_-(w) = \pm s_M(X^\circ_w)$$

- Octagent Schubert Calculus: Let M_w be the Verma module from and Char(M_w) ⊂ T^{*}_{G/P} its characteristic cycle. Then ι^{*}[Char(M_w)] = ±c_{SM}(X^o_w).
- **Schubert basis**: The CSM/SM classes deform the Schubert classes:

$$c_{SM}(X_w^\circ) = [X_w] + \sum_{v < w} a_{w,v}[X_w].$$

Solution Poincaré duality: $\langle c_{SM}(X_u^\circ), s_M(X^{v,\circ}) \rangle = \delta_{u,v}$.

() Transversality (Schürmann): If $s_M(X^{u,\circ}) \cdot s_M(X^{v,\circ}) = \sum c_{u,v}^w s_M(X^{w,\circ})$ then

$$c^w_{u,v} = \chi(g_1 X^{u,\circ} \cap g_2 X^{v,\circ} \cap g_3 X^\circ_w)$$

(topological Euler characteristic).

Positivity

Theorem (Huh '09 (Grassmannians); AMSS'17,'19)

Let X = G/P, and consider the Schubert expansions:

$$c_{SM}(X_w^\circ) = [X_w] + \sum_{v < w} a_{w,v}[X_w]; \quad s_M(X_w^\circ) = [X_w] + \sum_{v < w} b_{w,v}[X_w].$$

Then $a_{w,v} \ge 0$ and $(-1)^{\ell(w)-\ell(v)}b_{w,v} \ge 0$.

Alternation was conjectured by Feher-Rimányi '17 for Grassmanians.

Conjecture

Consider the expansion

$$s_{\mathcal{M}}(X^{u,\circ})\cdot s_{\mathcal{M}}(X^{v,\circ})=\sum c_{u,v}^{w}s_{\mathcal{M}}(X^{w,\circ}).$$

Then $(-1)^{\ell(u)+\ell(v)+\ell(w)}c_{u,v}^{w} \geq 0.$

For k-step partial flag manifolds, $k \le 3$, this is proved ('21) by Knutson and Zinn-Justin using puzzles. Their results extend to the K_T version, utilizing motivic Segre classes (Brasselet-Schürmann-Yokura '05, recent calculations by Maxim-Schürmann, Feher-Rimányi-Weber, AMSS, Anderson-Chen-Tarasca, ...).

Leonardo Mihalcea

The Lagrangian model and Segre classes

Let X complex, projective manifold and let \mathbb{C}^* act on T_X^* with character \hbar^{-1} . Denote by $L_{\mathbb{C}^*}(X) \subset H^{\mathbb{C}^*}_*(T_X^*)$, the group of conic, Lagrangian cycles in T_X^* .

Example

If $Y \subset X$ closed, irreducible, its conormal space is:

$$T_Y^*X := \overline{T_{Y^{reg}}^*X} \subset T_X^*.$$

• The characteristic cycle map is:

$$\mathcal{CC}: \mathcal{F}(X) \to L_{\mathbb{C}^*}(X); \quad \mathcal{E}u_Y \mapsto (-1)^{\dim Y}[\mathcal{T}^*_Y(X)],$$

where $Eu_Y(y)$ is MacPherson's local Euler obstruction of Y at y.

• If $C \subset T_X^*$ is a cone, and $q : \mathbb{P}(T_X^* \oplus 1) \to X$ is the projection, the Segre class is

$$Segre(C) := q_* \big(\frac{[\overline{C}]}{c(\mathcal{O}_{\mathbb{P}(\mathcal{T}^*_X \oplus 1)}(-1))} \big) = q_* (\sum_{\scriptscriptstyle i \geq 0} c_1(\mathcal{O}_{\mathbb{P}(\mathcal{T}^*_X \oplus 1)}(1))^i \cap [\overline{C}]) \in H_*(X).$$

Example

Segre $(T_X^*) = c(T_X^*)^{-1} \cap [X].$

Positivity

Theorem (Sabbah '85, Ginzburg '86, Pragacz-Parusinski '01, Schürmann '05) For $\varphi \in \mathcal{F}(X)$, and let $c_*(\varphi) = c_0 + c_1 + \dots$, where $c_i \in A_i(X)$. Define $\check{c}_*(\varphi) = c_0 - c_1 + c_2 - \dots$ Then

$$c(T_X^*) \cap Segre(CC(\varphi)) = \check{c}_*(\varphi).$$

Equivalently,

$${\it Segre}({\it CC}(arphi)) = rac{\check{c}_*(arphi)}{c({\it T}_X^*)}.$$

Lemma (Aluffi-M.-Schürmann-Su '17)

Let $\varphi = \mathbf{1}_{X_{w}^{\circ}}$. Then the following hold: (a) $(-1)^{\ell(w)}CC(\mathbf{1}_{X_{w}^{\circ}})$ is effective. (b) The Segre class $(-1)^{\ell(w)}Segre(CC(\mathbf{1}_{X_{w}^{\circ}}))$ is an effective cycle in $T_{G/P}^{*}$.

Proof.

Part (a) follows because $(-1)^{\ell(w)} CC(\mathbb{1}_{X_w^{\circ}})$ is the characteristic cycle of a holonomic $\mathcal{D}_{G/P}$ -module (Brylinski-Kashiwara, Beilinson-Bernstein). Part (b) follows because $T_{G/P}$ is globally generated, therefore so is $\mathcal{O}_{\mathbb{P}(T_X^*\oplus 1)}(1)$. Then its powers preserve effective cycles.

Positivity (cont.)

Recall

$$(-1)^{\ell(w)}$$
Segre $(CC(\mathbb{1}_{X_w^\circ})) = rac{\check{c}_*(\mathbb{1}_{X_w^\circ})}{c(T_X^\circ)} \ge 0.$

Corollary

Let X = G/P. (a) The Segre class $\frac{c_*(\mathbf{1}_{X_w^{\odot}})}{c(T_X)}$ is alternating. (b) Let P = B. Then the CSM class $c_{SM}(X_w^{\odot})$ is effective. (c) For any $X_w^{\odot} \subset G/P$, the CSM class $c_{SM}(X_w^{\odot})$ is effective.

Proof.

- Part (a) is a consequence of the previous Lemma.
- Part (b) follows because CSM and SM classes for X^o_w ⊂ G/B differ by changing signs in homogeneous components (using the Hecke action).
- Part (c) follows by functoriality of CSM classes.

Remark. The alternation of $s_M(U)$ holds for any affine inclusions $U \hookrightarrow X$ such that T_X is globally generated.

THANK YOU!

CSM classes in Gr(2,5)

Examples for Fl(3)

Recall that $H^*(G/B) = \bigoplus_{w \in W} \mathbb{Z}[X(w)]$. Then:

$$c_{\mathsf{SM}}(X(w)^{\circ}) = \sum_{v \leq w} c(w; v)[X(v)] = \mathbf{1} \cdot [X(w)] + \ldots + \mathbf{1} \cdot [pt].$$

Consider the flag variety $\operatorname{Fl}(3) = \{F_1 \subset F_2 \subset \mathbb{C}^3\}.$

•
$$c_{SM}(X(s_1)^\circ) = \mathcal{T}_1(c_{SM}[pt]) = (\partial_1 - s_1)[pt] = [X(s_1)] + [pt].$$

(Recall $X(s_1)^\circ \simeq \mathbb{P}^1 \setminus pt.$)

(a) The CSM of the open Schubert cell $c_{SM}(Fl(3)^{\circ}) = c_{SM}(X(s_1s_2s_1)^{\circ})$ is:

$$[Fl(3)] + [X(s_2s_1] + [X(s_1s_2)] + 2[X(s_1)] + 2[X(s_2)] + [pt].$$

The total Chern class of Fl(3) is:

$$c(T_{\mathrm{Fl}(3)}) = \sum_{w \in S_3} c_{\mathrm{SM}}(X(w)^{\circ})$$
$$= [\mathrm{Fl}(3)] + 2[X(s_2s_1)] + 2[X(s_1s_2)] + 6[X(s_1)] + 6[X(s_2)] + 6[pt].$$