Equivariant oriented cohomology of Bott-Samelson varieties

Hao Li
SUNY at Albany
21 March

Overview

- Equivariant oriented cohomology theory
- Bott-Samelson varieties
- Restriction formulas and some applications

Equivariant oriented cohomology theory

Definition

An equivariant oriented cohomology theory over k is an additive contravariant functor h_{G} from the category G-Var of G-equivariant smooth quasi-projective varieties over k to the commutative rings with unit together with some axioms including

- a natural transformation of functors $c^{G}: K_{G} \rightarrow \tilde{h_{G}}\left(\tilde{h_{G}}\right.$ is total equivariant characteristic class).
- (Quillen's formula) If \mathcal{L}_{1} and \mathcal{L}_{2} are locally free sheaves of rank 1 , then

$$
c_{1}\left(\mathcal{L}_{1} \otimes \mathcal{L}_{2}\right)=c_{1}\left(\mathcal{L}_{1}\right)+F c_{1}\left(\mathcal{L}_{2}\right)
$$

where F is the formal group law of h.

Equivariant oriented cohomology of a point

Let T be a split torus and Λ be the group of characters of T.
Consider the formal group algebra $R \llbracket \Lambda \rrbracket_{F}$, which is topologically generated by elements of form $x_{\lambda}, \lambda \in \Lambda$, which satisfy $x_{\lambda+\mu}=x_{\lambda}+F x_{\mu}$.

Theorem (Calmès-Petrov-Zainoulline)

If h is (separated and) Chern complete over the point for T, then the natural map $h_{T}(p t) \rightarrow R \llbracket \Lambda \rrbracket_{F}$ is an isomorphism. It sends the characteristic class $c_{1}^{T}\left(\mathcal{L}_{\lambda}\right) \in h_{T}(p t)$ to $x_{\lambda} \in R \llbracket \Lambda \rrbracket_{F}$.

Example

- The equivariant Chow ring: $S_{\mathbb{Z}}(\Lambda)^{\wedge}$.
- The (completed) equivariant K-theory: $\mathbb{Z}[\Lambda]^{\wedge}$.
- The equivariant algebraic cobordism: $\mathbb{L} \llbracket \Lambda \rrbracket u$.

Equivariant oriented cohomology of T-fixed points

Let G be a split algebraic group over k containing T as the maximal torus, with character group Λ. Let W be the Weyl group associated to (G, T). We denote the roots of G by Σ and choose a Borel subgroup B containing T.

The T-fixed k-points of G / B are in bijection with elements of W.
We can define an R-module $S_{W}:=S \otimes_{R} R[W]$ with the product structure

$$
q \delta_{w} q^{\prime} \delta_{w^{\prime}}=q w\left(q^{\prime}\right) \delta_{w w^{\prime}}, \quad q, q^{\prime} \in S, \quad w, w^{\prime} \in W
$$

And we have

$$
\operatorname{Hom}_{S}\left(S_{W}, S\right) \cong h_{T}\left((G / B)^{T}\right)
$$

where f_{w} is the dual basis of δ_{w} satisfying $f_{w} f_{w^{\prime}}=\delta_{w, w^{\prime}} f_{w}$.

Formal Demazure algebra

Let $Q_{W}=S\left[\left.\frac{1}{x_{\alpha}} \right\rvert\, \alpha \in \Sigma\right] \otimes_{S} S_{W}$, inside which we can define formal Demazure element:

$$
X_{\alpha}=\frac{1}{x_{\alpha}}-\frac{1}{x_{\alpha}} \delta_{s_{\alpha}} .
$$

The formal Demazure algebra \mathcal{D} is the R-subalgebra of Q_{W} generated by elements from S and elements $X_{\alpha}, \alpha \in \Sigma$.

Theorem (Calmes-Zainoulline-Zhong)

The pull-back map to fixed points $\imath^{*}: h_{T}(G / B) \rightarrow h_{T}(W)$ is injective, and its image is isomorphic to $\operatorname{Hom}_{S}(\mathcal{D}, S)$.

Bott-Samelson varieties

Let P_{i} be a minimal parabolic subgroup corresponding to a simple root α_{i}.

Definition

For an I-tuple of integers $I=\left(i_{1}, i_{2}, \cdots, i_{l}\right)$ with $1 \leq i_{j} \leq n$, we define a variety \hat{X}_{I} to be the fiber product

$$
\hat{X}_{I}=P_{i_{1}} \times{ }^{B} P_{i_{2}} \times{ }^{B} \cdots \times^{B} P_{i_{1}} / B .
$$

The multiplication all all factors induces a map $q_{I}: \hat{X}_{I} \rightarrow G / B$, which provides us a resolution of Shubert variety X_{I} if I is a reduced decomposition of $w(I)=s_{i_{1}} s_{i_{2}} \cdots s_{i_{l}}$.

The Bott-Salmelson class ζ_{I} is the push-forward $q_{I *}(1)$ in $h_{T}(G / B)$. For any choice of reduced sequence $\left\{I_{w}\right\}_{w \in W}$, the classes ζ_{I} generate $h_{T}(G / B)$ as an S-module.

Bott-Samelson varieties

Theorem (Calmes-Petrov-Zainoulline)

We have the following presentation

$$
h_{T}\left(\hat{X}_{l}\right) \cong h_{T}(p t)\left[\eta_{1}, \eta_{2}, \cdots, \eta_{I}\right] /\left(\left\{\eta_{j}^{2}-y_{j} \eta_{j} \mid j=1, \cdots, I\right\}\right)
$$

where

$$
y_{j}=p^{*} \boldsymbol{c}_{\left(i_{1}, \ldots, i_{j-1}\right)}\left(x_{-\alpha_{i j}}\right), \quad \eta_{j}=p^{*} \sigma_{j_{*}}(1)
$$

with p^{*} the pull-back from $h_{T}\left(\hat{X}_{\left(i_{1}, \ldots, i_{j}\right)}\right)$ to $h_{T}\left(\hat{X}_{l}\right)$.
For each subset $L \in[/]$, define

$$
\eta_{L}=\prod_{j \in L} \eta_{j} \in h_{T}\left(\hat{X}_{l}\right)
$$

The S-module $h_{T}\left(\hat{X}_{l}\right)$ is free with basis $\left\{\eta_{L} \mid L \in \mathcal{P}_{I}\right\}$.

Bott-Samelson varieties

For $\operatorname{SL}(4)$ whose simple roots are $\alpha_{1}, \alpha_{2}, \alpha_{3}$, let us consider Bott-Salmelson $\hat{X}_{I}=P_{1} \times{ }^{B} P_{2} \times{ }^{B} P_{3} / B$. Then $h_{T}\left(\hat{X}_{I}\right)$ is a polynomial algebra generated by $\eta_{1}, \eta_{2}, \eta_{3}$ with following quotient relations:

$$
\begin{aligned}
& \eta_{1}^{2}=x_{-\alpha_{1}} \eta_{1} \\
& \eta_{2}^{2}=x_{-\alpha_{1}-\alpha_{2}} \eta_{1}+\frac{x_{-\alpha_{2}}-x_{\alpha_{1}-\alpha_{2}}}{x_{-\alpha_{1}}} \eta_{1} \eta_{2} \\
& \eta_{3}^{2}=x_{\alpha_{1}-\alpha_{2}-\alpha_{3}} \eta_{3}+\frac{x_{-\alpha_{3}-\alpha_{2}}-x_{2 \alpha_{1}-\alpha_{2}-\alpha_{3}}}{x_{-\alpha_{1}}} \eta_{1} \eta_{3}+\frac{x_{\alpha_{3}}-x_{\alpha_{1}+\alpha_{2}-\alpha_{3}}}{x_{-\alpha_{1}-\alpha_{2}}} \eta_{2} \eta_{3} \\
& +\left(\frac{\left.x_{-\alpha_{3}-x_{\alpha_{2}-\alpha_{3}}}^{x_{-\alpha_{2}} x_{-\alpha_{1}}}-\frac{x_{-\alpha_{3}}-x_{\alpha_{2}-\alpha_{1}-\alpha_{3}}}{x_{\alpha_{1}-\alpha_{2}} x_{-\alpha_{1}}}\right) \eta_{1} \eta_{2} \eta_{3}}{}\right.
\end{aligned}
$$

Bott-Samelson varieties

Lemma (Willems)

(1) The set \hat{X}_{I}^{T} of T-fixed points in \hat{X}_{1}, consists of 2^{\prime} points

$$
\left[g_{1}, g_{2}, \cdots, g_{l}\right]
$$

where $g_{j} \in\left\{e, s_{i_{j}}\right\}$. Here we think of $s_{i_{j}}$ as in $W \cong N_{G}(T) / T$ and pick a preimage for $s_{i j}$ in $N_{G}(T) \subset G$. Consequently, we have bijection of sets from the power set $\mathcal{P}_{I}:=\mathcal{P}([/])$ to $\hat{X}_{I}{ }^{T}$,

$$
L \mapsto p t_{L}:=\left[g_{1}, \ldots, g_{j}\right], \quad g_{j}=\left\{\begin{array}{cc}
s_{i j}, & \text { if } j \in L, \\
e, & \text { if } j \notin L .
\end{array}\right.
$$

(2) The set $\left(\hat{X}_{l}\right)_{L}$ is a T-orbit containing the fixed point pt t_{L}, and isomorphic to the affine space of dimension $|L|$. The variety \hat{X}_{I} has a decomposition $\coprod_{L \in \mathcal{E}_{l}}\left(\hat{X}_{l}\right)_{L}$.

Bott-Samelson varieties

(3) Suppose $L, L^{\prime} \subset[/]$. then $p t_{L} \in \overline{\left(\hat{X}_{I}\right)_{L^{\prime}}}$ if and only if $L \subset L^{\prime}$. The weights of the T-action on the tangent space of $\overline{\left(\hat{X}_{I}\right)_{L^{\prime}}}$ at $p t_{L}$ are

$$
\left\{-v_{j}^{L}\left(\alpha_{i_{j}}\right) \mid j \in L^{\prime}\right\}
$$

Example

For the A_{2}-case, consider $\hat{X}_{(1,2)}=P_{1} \times{ }^{B} P_{2} / B$. There are four T-fixed points, denoted by $\{00,01,10,11\}$, corresponding to $\left\{[e, e],\left[e, s_{2}\right],\left[s_{1}, e\right],\left[s_{1}, s_{2}\right]\right\}$, or $\emptyset,\{2\},\{1\},\{1,2\}$ as subsets of [2]. The weights of the tangent spaces of $\hat{X}_{(1,2)}$ at the four points are:

$$
\begin{array}{cccc}
00: & -\alpha_{1},-\alpha_{2} & 01: & -\alpha_{1}, \alpha_{2} \\
10: & \alpha_{1},-\alpha_{1}-\alpha_{2} & 11: & \alpha_{1}, \alpha_{1}+\alpha_{2} .
\end{array}
$$

Bott-Samelson varieties

We denote the set of functions on $\mathcal{E}_{l}=\hat{X}_{l}^{T}$ with values in S by $F\left(\mathcal{E}_{l} ; S\right)$. It is a free S-module with basis $f_{L}, L \in \mathcal{E}_{l}$ defined by $f_{L}\left(L^{\prime}\right)=\delta_{L, L^{\prime}}$, and have a ring structure given by $f_{L} \cdot f_{L^{\prime}}=\delta_{L, L^{\prime}} f_{L}$. Moreover, we have $h_{T}\left(\left(\hat{X}_{l}\right)^{T}\right) \cong F\left(\mathcal{E}_{l} ; S\right)$.

Theorem (L.-Zhong)

Let I be a sequence of length I. For any two subsets $L, M \subset[/]$ denote $L^{c}=[/] \backslash L$ and

$$
a_{L, M}=\prod_{k \in L} v_{k-1}^{M}\left(x_{-\alpha_{i_{k}}}\right),
$$

where $v_{j}^{M}=\prod_{k \in \operatorname{L\cap [j]}} s_{i_{k}}$ Then

$$
\mathbf{j}^{*}\left(\eta_{L}\right)=\sum_{M \subset L^{c}} a_{L, M} f_{M} .
$$

The map $\mathrm{j}^{*}: h_{T}\left(\hat{X}_{l}\right) \rightarrow h_{T}\left(\hat{X}_{l}^{T}\right)$ is an injection.

Bott-Samelson varieties

Example

Consider the case of A_{2}. Let $\left\{\alpha_{1}, \alpha_{2}\right\}$ be the set of simple roots. We consider the Bott-Samelson variety $\hat{X}_{I}=P_{1} \times{ }^{B} P_{2} / B$ for $I=(1,2)$. There are four torus-fixed points, denoted by $\mathcal{P}_{2}=\{00,01,10,11\}$. Similarly, denote $\left(P_{1} / B\right)^{T}$ by $\mathcal{P}_{1}=\{0,1\}$. We have the following commutative diagram:

$$
\begin{aligned}
& P_{1} \times{ }^{B} P_{2} / B \underset{j^{\prime}}{<} \mathcal{P}_{2}=\{00,01,10,11\} . \\
& \sigma_{2} \uparrow \mid p_{2} \quad \downarrow^{\prime} \\
& P_{1} / B \leftharpoonup \quad j^{1} \quad \mathcal{P}_{1}=\{0,1\} \\
& \sigma_{1} \uparrow \mid{ }_{1} \\
& p t
\end{aligned}
$$

Corollary

Bott-Samelson varieties

Example

We have

$$
\begin{aligned}
& \left(\mathbf{j}^{\prime}\right)^{*}\left(\eta_{1}\right)=x_{-\alpha_{1}}\left(f_{00}+f_{01}\right) . \\
& \left(\mathbf{j}^{\prime}\right)^{*}\left(\eta_{2}\right)=x_{-\alpha_{2}} f_{00}+x_{-\alpha_{1}-\alpha_{2}} f_{10} . \\
& \left(\mathbf{j}^{\prime}\right)^{*}\left(\eta_{1} \eta_{2}\right)=x_{-\alpha_{1}} x_{-\alpha_{2}} f_{00} .
\end{aligned}
$$

In K-theory, $\eta_{1}=\left[\overline{\left(\hat{X}_{l}\right)_{01}}\right], \eta_{2}=\left[\overline{\left(\hat{X}_{l}\right)_{10}}\right], \eta_{1} \eta_{2}=\left[\overline{\left(\hat{X}_{l}\right)_{00}}\right]$.
In general, we have

$$
\eta_{L}=\left[\overline{\left(\hat{X}_{l}\right)_{L^{c}}}\right] .
$$

Bott-Samelson varieties

Theorem (L.-Zhong)

If $I=\left(i_{1}, \ldots, i_{I}\right)$ with i_{j} all distinct, then we have

$$
\operatorname{im}\left(\mathbf{j}^{*}\right)=\left\{\sum_{L \subset[/]} a_{L} f_{L} \left\lvert\, \frac{a_{L_{1}}-a_{L_{2}}}{v_{k-1}^{L_{1}}\left(x_{-\alpha_{i_{k}}}\right)} \in S\right., \forall L_{1}, L_{2} \text { such that } L_{1}=L_{2} \sqcup\{k\}\right\} .
$$

The Bott-Salmelson varieties \hat{X}_{I} are GKM spaces if $I=\left(i_{1}, \ldots, i_{I}\right)$ with i_{j} all distinct.

Bott-Samelson varieties

Lemma (Calmes-Zainoulline-Zhong)

For any sequence $I=\left(i_{1}, \cdots, i_{n}\right)$, we have $\imath^{*}\left(\zeta_{I}\right)=A_{\text {Irev }}\left(p t_{e}\right)=A_{\alpha_{i_{n}}} \cdots A_{\alpha_{i_{1}}}\left(p t_{e}\right)$, where
A_{α} is the algebraic realization of $h_{T}(G / B) \xrightarrow{\pi_{*}} h_{T}\left(G / P_{\alpha}\right) \xrightarrow{\pi^{*}} h_{T}(G / B)$. $p t_{e}$ is the image of $h_{T}(e / B) \xrightarrow{\left(\imath_{e}\right)_{*}} h_{T}(G / B) \xrightarrow{\left(\imath_{e}\right)^{*}} h_{T}(e / B)$

Lemma

Let I be a sequence of length I and $1 \leq k \leq I$. Denote by I_{k} the subsequence of I obtained by removing the k-th term from I. Then $\imath^{*}\left(\left(q_{I}\right)_{*}\left(\eta_{k}\right)\right)=A_{l_{k}^{\text {rev }}}\left(p t_{e}\right)$.

Bott-Samelson varieties

Theorem (L.-Zhong)

For any sequence $I=\left(i_{1}, \ldots, i_{l}\right)$, we have

$$
\imath^{*} q_{I *}\left(\eta_{L}\right)=\sum_{L_{1} \subset L^{c}} \frac{a_{L, L_{1}} \cdot v^{L_{1}}\left(x_{\Pi}\right)}{x_{I, L_{1}}} f_{v^{L_{1}}}, \quad x_{\Pi}:=\prod_{\alpha<0} x_{\alpha} \in S
$$

where $v^{L}:=v_{l}^{L}=\prod_{k \in L} s_{i_{k}}$, and $x_{l, L}=\prod_{1 \leq j \leq I} v_{j}^{L}\left(x_{-_{i_{j}}}\right)$. Note that a priori the coefficients of $f_{v_{1}}$ belong to S.

Corollary

Let I be any sequence of length I. For any $L \subset[I]$, denote by $q_{L}: \hat{X}_{L} \rightarrow G / B$. Then $q_{I *}\left(\eta_{L}\right)=q_{L c_{*}}(1)$.

Bott-Samelson varieties

Corollary

For any $u \in h_{T}(p t)$, we have

$$
\mathbf{c}^{\prime}(u) \cdot \zeta_{w}=\sum_{L \subset[\ell(w)]} \theta_{l, L}(u) \zeta_{L^{c}},
$$

where $\zeta_{L c}=q_{L c_{*}}(1), \theta_{l, L}=\theta_{1} \cdots \theta_{l}$ with
$\theta_{j}=\left\{\begin{array}{lc}\Delta_{-\alpha_{i j}}=X_{-\alpha_{i j}} \cdot, & \text { if } j \in L, \\ s_{i j}, & \text { otherwise },\end{array}\right.$ and $\mathbf{c}^{\prime}\left(x_{\lambda}\right)=c_{1}\left(\mathcal{L}_{\lambda}\right)$.

Reference

- Calmes, Baptiste, Kirill Zainoulline, and Changlong Zhong. Equivariant oriented cohomology of flag varieties. Doc. Math., Extra Volume: Alexander S. Merkurjev's Sixtieth Birthday (2015), 113-144.
- Calmes, Baptiste, Viktor Petrov, and Kirill Zainoulline. Ïnvariants, torsion indices and oriented cohomology of complete flags. Ännales Scientifiques de l'Ecole Normale Superieure. Vol. 46. No. 3. 2013.
- Willems, Matthieu. "Cohomologie équivariante des tours de Bott et calcul de Schubert équivariant." Journal of the Institute of Mathematics of Jussieu 5.1 (2006): 125.
- Li, Hao, and Changlong Zhong. " On equivariant oriented cohomology of Bott-Samelson varieties." arXiv preprint arXiv:2004.07680 (2020).

Thank you

