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Equivariant oriented cohomology theory

Definition
An equivariant oriented cohomology theory over k is an additive
contravariant functor hG from the category G-Var of G-equivariant
smooth quasi-projective varieties over k to the commutative rings with
unit together with some axioms including

a natural transformation of functors cG : KG → h̃G (h̃G is total
equivariant characteristic class).
(Quillen’s formula) If L1 and L2 are locally free sheaves of rank 1,
then

c1(L1 ⊗ L2) = c1(L1) +F c1(L2),

where F is the formal group law of h.
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Equivariant oriented cohomology of a point

Let T be a split torus and Λ be the group of characters of T .

Consider the formal group algebra RJΛKF , which is topologically generated
by elements of form xλ, λ ∈ Λ, which satisfy xλ+µ = xλ +F xµ.

Theorem (Calmès-Petrov-Zainoulline)
If h is (separated and) Chern complete over the point for T , then the
natural map hT (pt)→ RJΛKF is an isomorphism. It sends the
characteristic class cT

1 (Lλ) ∈ hT (pt) to xλ ∈ RJΛKF .

Example
The equivariant Chow ring: SZ(Λ)∧.
The (completed) equivariant K-theory: Z[Λ]∧.
The equivariant algebraic cobordism: LJΛKU .
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Equivariant oriented cohomology of T -fixed points

Let G be a split algebraic group over k containing T as the maximal torus,
with character group Λ. Let W be the Weyl group associated to (G ,T ).
We denote the roots of G by Σ and choose a Borel subgroup B containing
T .

The T -fixed k-points of G/B are in bijection with elements of W .

We can define an R-module SW := S ⊗R R[W ] with the product structure

qδw q′δw ′ = qw(q′)δww ′ , q, q′ ∈ S, w ,w ′ ∈W .

And we have
HomS(SW ,S) ∼= hT ((G/B)T ),

where fw is the dual basis of δw satisfying fw fw ′ = δw ,w ′fw .
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Formal Demazure algebra

Let QW = S[ 1
xα
|α ∈ Σ]⊗S SW , inside which we can define formal

Demazure element:
Xα = 1

xα
− 1

xα
δsα .

The formal Demazure algebra D is the R-subalgebra of QW generated by
elements from S and elements Xα, α ∈ Σ.

Theorem (Calmes-Zainoulline-Zhong)
The pull-back map to fixed points ı∗ : hT (G/B)→ hT (W ) is injective,
and its image is isomorphic to HomS(D,S).
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Bott-Samelson varieties

Let Pi be a minimal parabolic subgroup corresponding to a simple root αi .

Definition
For an l-tuple of integers I = (i1, i2, · · · , il ) with 1 ≤ ij ≤ n, we define a
variety X̂I to be the fiber product

X̂I = Pi1 ×B Pi2 ×B · · · ×B Pil/B.

The multiplication all all factors induces a map qI : X̂I → G/B, which
provides us a resolution of Shubert variety XI if I is a reduced
decomposition of w(I) = si1si2 · · · sil .

The Bott-Salmelson class ζI is the push-forward qI∗(1) in hT (G/B). For
any choice of reduced sequence {Iw}w∈W , the classes ζI generate
hT (G/B) as an S-module.
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Bott-Samelson varieties

Theorem (Calmes-Petrov-Zainoulline)
We have the following presentation

hT (X̂I) ∼= hT (pt)[η1, η2, · · · , ηl ]/(
{
ηj

2 − yjηj |j = 1, · · · , l
}

),

where
yj = p∗c(i1,...,ij−1)(x−αij

), ηj = p∗σj∗(1),

with p∗ the pull-back from hT (X̂(i1,...,ij )) to hT (X̂I).

For each subset L ∈ [l ], define

ηL =
∏
j∈L

ηj ∈ hT (X̂I).

The S-module hT (X̂I) is free with basis {ηL|L ∈ Pl} .
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Bott-Samelson varieties

For SL(4) whose simple roots are α1, α2, α3, let us consider
Bott-Salmelson X̂I = P1 ×B P2 ×B P3/B. Then hT (X̂I) is a polynomial
algebra generated by η1, η2, η3 with following quotient relations:

η2
1 = x−α1η1,

η2
2 = x−α1−α2η1 + x−α2 − xα1−α2

x−α1
η1η2,

η2
3 = xα1−α2−α3η3 + x−α3−α2 − x2α1−α2−α3

x−α1
η1η3 + xα3 − xα1+α2−α3

x−α1−α2
η2η3

+ (
x−α3−xα2−α3

x−α2x−α1
− x−α3 − xα2−α1−α3

xα1−α2x−α1
)η1η2η3.
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Bott-Samelson varieties

Lemma (Willems)
1 The set X̂ T

I of T -fixed points in X̂I , consists of 2l points

[g1, g2, · · · , gl ]

where gj ∈
{

e, sij

}
. Here we think of sij as in W ∼= NG(T )/T and

pick a preimage for sij in NG(T ) ⊂ G. Consequently, we have
bijection of sets from the power set Pl := P([l ]) to X̂ T

I ,

L 7→ ptL := [g1, ..., gl ], gj =
{

sij , if j ∈ L,
e, if j /∈ L.

2 The set (X̂I)L is a T -orbit containing the fixed point ptL, and
isomorphic to the affine space of dimension |L|. The variety X̂I has a
decomposition

∐
L∈EI

(X̂I)L.
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Bott-Samelson varieties

3 Suppose L, L′ ⊂ [l ]. then ptL ∈ (X̂I)L′ if and only if L ⊂ L′. The
weights of the T -action on the tangent space of (X̂I)L′ at ptL are

{−vL
j (αij )|j ∈ L′}.

Example

For the A2-case, consider X̂(1,2) = P1 ×B P2/B. There are four T -fixed
points, denoted by {00, 01, 10, 11}, corresponding to
{[e, e], [e, s2], [s1, e], [s1, s2]}, or ∅, {2}, {1}, {1, 2} as subsets of [2]. The
weights of the tangent spaces of X̂(1,2) at the four points are:

00 : −α1,−α2 01 : −α1, α2
10 : α1,−α1 − α2 11 : α1, α1 + α2.
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Bott-Samelson varieties

We denote the set of functions on EI = X̂ T
I with values in S by F (EI ; S).

It is a free S-module with basis fL, L ∈ EI defined by fL(L′) = δL,L′ , and
have a ring structure given by fL · fL′ = δL,L′fL. Moreover, we have
hT ((X̂I)T ) ∼= F (EI ; S).

Theorem (L.-Zhong)
Let I be a sequence of length l. For any two subsets L,M ⊂ [l ] denote
Lc = [l ]\L and

aL,M =
∏
k∈L

vM
k−1(x−αik

),

where vM
j =

∏
k∈L∩[j] sik Then

j∗(ηL) =
∑

M⊂Lc
aL,M fM .

The map j∗ : hT (X̂I)→ hT (X̂ T
I ) is an injection.
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Bott-Samelson varieties

Example

Consider the case of A2. Let {α1, α2} be the set of simple roots. We
consider the Bott-Samelson variety X̂I = P1 ×B P2/B for I = (1, 2). There
are four torus-fixed points, denoted by P2 = {00, 01, 10, 11}. Similarly,
denote (P1/B)T by P1 = {0, 1}. We have the following commutative
diagram:

P1 ×B P2/B

p2
��

P2 = {00, 01, 10, 11}
jI
oo

p′2
��

P1/B
p1

��

σ2

JJ

P1 = {0, 1}
j1

oo

pt

σ1

JJ

.

Corollary

The map ∗ : hT (I)→ hT (T
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Bott-Samelson varieties

Example
We have

(jI)∗(η1) = x−α1(f00 + f01).
(jI)∗(η2) = x−α2f00 + x−α1−α2f10.

(jI)∗(η1η2) = x−α1x−α2f00.

In K -theory, η1 = [(X̂I)01], η2 = [(X̂I)10], η1η2 = [(X̂I)00].
In general, we have

ηL = [(X̂I)Lc ].
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Bott-Samelson varieties

Theorem (L.-Zhong)
If I = (i1, ..., il ) with ij all distinct, then we have

im(j∗) = {
∑

L⊂[l]
aLfL|

aL1 − aL2

vL1
k−1(x−αik

)
∈ S, ∀L1, L2 such that L1 = L2 t {k}}.

The Bott-Salmelson varieties X̂I are GKM spaces if I = (i1, ..., il ) with ij all
distinct.
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Bott-Samelson varieties

Lemma (Calmes-Zainoulline-Zhong)
For any sequence I = (i1, · · · , in), we have
ı∗(ζI) = AIrev(pte) = Aαin · · ·Aαi1

(pte), where

Aα is the algebraic realization of hT (G/B) π∗−→ hT (G/Pα) π∗−→ hT (G/B).

pte is the image of hT (e/B) (ıe)∗−−−→ hT (G/B) (ıe)∗−−−→ hT (e/B)

Lemma
Let I be a sequence of length l and 1 ≤ k ≤ l . Denote by Ik the
subsequence of I obtained by removing the k-th term from I. Then
ı∗((qI)∗(ηk)) = AIrev

k
(pte).
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Bott-Samelson varieties

Theorem (L.-Zhong)
For any sequence I = (i1, ..., il ), we have

ı∗qI∗(ηL) =
∑

L1⊂Lc

aL,L1 · vL1(xΠ)
xI,L1

fvL1 , xΠ :=
∏
α<0

xα ∈ S,

where vL := vL
l =

∏
k∈L sik , and xI,L =

∏
1≤j≤l vL

j (x−ij
). Note that a priori

the coefficients of fvL1 belong to S.

Corollary
Let I be any sequence of length l. For any L ⊂ [l ], denote by
qL : X̂L → G/B. Then qI∗(ηL) = qLc∗(1).
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Bott-Samelson varieties

Corollary
For any u ∈ hT (pt), we have

c′(u) · ζw =
∑

L⊂[`(w)]
θI,L(u)ζLc ,

where ζLc = qLc∗(1), θl ,L = θ1 · · · θl with

θj =

∆−αij
= X−αij

·, if j ∈ L,
sij , otherwise,

and c′(xλ) = c1(Lλ).
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