hli29@albany.edu

Equivariant oriented cohomology of Bott-Samelson varieties

Hao Li

SUNY at Albany

21 March

Hao Li (SUNY at Albany)

Equivariant oriented cohomology

- Equivariant oriented cohomology theory
- Bott-Samelson varieties
- Restriction formulas and some applications

Definition

An equivariant oriented cohomology theory over k is an additive contravariant functor h_G from the category G-Var of G-equivariant smooth quasi-projective varieties over k to the commutative rings with unit together with some axioms including

- a natural transformation of functors $c^G : K_G \to \tilde{h_G}$ ($\tilde{h_G}$ is total equivariant characteristic class).
- (Quillen's formula) If \mathcal{L}_1 and \mathcal{L}_2 are locally free sheaves of rank 1, then

$$c_1(\mathcal{L}_1\otimes\mathcal{L}_2)=c_1(\mathcal{L}_1)+_Fc_1(\mathcal{L}_2),$$

where F is the formal group law of h.

Equivariant oriented cohomology of a point

Let T be a split torus and Λ be the group of characters of T.

Consider the formal group algebra $R[\![\Lambda]\!]_F$, which is topologically generated by elements of form x_{λ} , $\lambda \in \Lambda$, which satisfy $x_{\lambda+\mu} = x_{\lambda} + x_{\mu}$.

Theorem (Calmès-Petrov-Zainoulline)

If h is (separated and) Chern complete over the point for T, then the natural map $h_T(pt) \rightarrow R[\![\Lambda]\!]_F$ is an isomorphism. It sends the characteristic class $c_1^T(\mathcal{L}_\lambda) \in h_T(pt)$ to $x_\lambda \in R[\![\Lambda]\!]_F$.

Example

- The equivariant Chow ring: $S_{\mathbb{Z}}(\Lambda)^{\wedge}$.
- The (completed) equivariant K-theory: $\mathbb{Z}[\Lambda]^{\wedge}.$
- The equivariant algebraic cobordism: $\mathbb{L}[\![\Lambda]\!]_U$.

イロト イヨト イヨト イヨ

Let G be a split algebraic group over k containing T as the maximal torus, with character group Λ . Let W be the Weyl group associated to (G, T). We denote the roots of G by Σ and choose a Borel subgroup B containing T.

The *T*-fixed *k*-points of G/B are in bijection with elements of *W*.

We can define an R-module $S_W := S \otimes_R R[W]$ with the product structure

$$q\delta_w q'\delta_{w'} = qw(q')\delta_{ww'}, \quad q,q'\in \mathcal{S}, \quad w,w'\in \mathcal{W}.$$

And we have

$$Hom_{\mathcal{S}}(\mathcal{S}_W,\mathcal{S})\cong h_T((\mathcal{G}/\mathcal{B})^T),$$

where f_w is the dual basis of δ_w satisfying $f_w f_{w'} = \delta_{w,w'} f_w$.

Let $Q_W = S[\frac{1}{x_{\alpha}} | \alpha \in \Sigma] \otimes_S S_W$, inside which we can define formal Demazure element:

$$X_{lpha} = rac{1}{x_{lpha}} - rac{1}{x_{lpha}} \delta_{s_{lpha}}.$$

The formal Demazure algebra \mathcal{D} is the *R*-subalgebra of Q_W generated by elements from *S* and elements X_{α} , $\alpha \in \Sigma$.

Theorem (Calmes-Zainoulline-Zhong)

The pull-back map to fixed points $i^* : h_T(G/B) \to h_T(W)$ is injective, and its image is isomorphic to $Hom_S(\mathcal{D}, S)$.

Let P_i be a minimal parabolic subgroup corresponding to a simple root α_i .

Definition

For an *I*-tuple of integers $I = (i_1, i_2, \dots, i_l)$ with $1 \le i_j \le n$, we define a variety \hat{X}_l to be the fiber product

$$\hat{X}_I = P_{i_1} \times^B P_{i_2} \times^B \cdots \times^B P_{i_l}/B.$$

The multiplication all all factors induces a map $q_I : \hat{X}_I \to G/B$, which provides us a resolution of Shubert variety X_I if I is a reduced decomposition of $w(I) = s_{i_1}s_{i_2}\cdots s_{i_l}$.

The Bott-Salmelson class ζ_I is the push-forward $q_{I*}(1)$ in $h_T(G/B)$. For any choice of reduced sequence $\{I_w\}_{w \in W}$, the classes ζ_I generate $h_T(G/B)$ as an S-module.

Theorem (Calmes-Petrov-Zainoulline)

We have the following presentation

$$h_T(\hat{X}_I) \cong h_T(pt)[\eta_1, \eta_2, \cdots, \eta_l]/(\left\{\eta_j^2 - y_j\eta_j|j=1, \cdots, I\right\}),$$

where

$$y_j = p^* c_{(i_1,...,i_{j-1})}(x_{-\alpha_{i_j}}), \quad \eta_j = p^* \sigma_{j_*}(1),$$

with p^* the pull-back from $h_T(\hat{X}_{(i_1,...,i_i)})$ to $h_T(\hat{X}_I)$.

For each subset $L \in [I]$, define

$$\eta_L = \prod_{j \in L} \eta_j \in h_T(\hat{X}_l).$$

The *S*-module $h_T(\hat{X}_I)$ is free with basis $\{\eta_L | L \in \mathcal{P}_I\}$.

~

For *SL*(4) whose simple roots are $\alpha_1, \alpha_2, \alpha_3$, let us consider Bott-Salmelson $\hat{X}_I = P_1 \times^B P_2 \times^B P_3/B$. Then $h_T(\hat{X}_I)$ is a polynomial algebra generated by η_1, η_2, η_3 with following quotient relations:

$$\begin{split} &\eta_1^2 = x_{-\alpha_1}\eta_1, \\ &\eta_2^2 = x_{-\alpha_1-\alpha_2}\eta_1 + \frac{x_{-\alpha_2} - x_{\alpha_1-\alpha_2}}{x_{-\alpha_1}}\eta_1\eta_2, \\ &\eta_3^2 = x_{\alpha_1-\alpha_2-\alpha_3}\eta_3 + \frac{x_{-\alpha_3-\alpha_2} - x_{2\alpha_1-\alpha_2-\alpha_3}}{x_{-\alpha_1}}\eta_1\eta_3 + \frac{x_{\alpha_3} - x_{\alpha_1+\alpha_2-\alpha_3}}{x_{-\alpha_1-\alpha_2}}\eta_2\eta_3 \\ &+ (\frac{x_{-\alpha_3-x_{\alpha_2-\alpha_3}}}{x_{-\alpha_2}x_{-\alpha_1}} - \frac{x_{-\alpha_3} - x_{\alpha_2-\alpha_1-\alpha_3}}{x_{\alpha_1-\alpha_2}x_{-\alpha_1}})\eta_1\eta_2\eta_3. \end{split}$$

Lemma (Willems)

• The set \hat{X}_I^T of *T*-fixed points in \hat{X}_I , consists of 2^I points

$$[g_1,g_2,\cdots,g_l]$$

where $g_j \in \{e, s_{i_j}\}$. Here we think of s_{i_j} as in $W \cong N_G(T)/T$ and pick a preimage for s_{i_j} in $N_G(T) \subset G$. Consequently, we have bijection of sets from the power set $\mathcal{P}_I := \mathcal{P}([I])$ to \hat{X}_I^T ,

$$L \mapsto pt_L := [g_1, ..., g_l], \quad g_j = \begin{cases} s_{i_j}, & \text{if } j \in L, \\ e, & \text{if } j \notin L. \end{cases}$$

The set (X̂_I)_L is a T-orbit containing the fixed point pt_L, and isomorphic to the affine space of dimension |L|. The variety X̂_I has a decomposition ∐_{L∈E_I}(X̂_I)_L.

Bott-Samelson varieties

Suppose $L, L' \subset [I]$. then $pt_L \in (\hat{X}_I)_{L'}$ if and only if $L \subset L'$. The weights of the *T*-action on the tangent space of $\overline{(\hat{X}_I)_{L'}}$ at pt_L are

$$\{-v_j^L(\alpha_{i_j})|j\in L'\}.$$

Example

For the A_2 -case, consider $\hat{X}_{(1,2)} = P_1 \times^B P_2/B$. There are four *T*-fixed points, denoted by $\{00, 01, 10, 11\}$, corresponding to $\{[e, e], [e, s_2], [s_1, e], [s_1, s_2]\}$, or $\emptyset, \{2\}, \{1\}, \{1, 2\}$ as subsets of [2]. The weights of the tangent spaces of $\hat{X}_{(1,2)}$ at the four points are:

$$\begin{array}{rrrr} {\rm 00}: & -\alpha_1, -\alpha_2 & {\rm 01}: & -\alpha_1, \alpha_2 \\ {\rm 10}: & \alpha_1, -\alpha_1 - \alpha_2 & {\rm 11}: & \alpha_1, \alpha_1 + \alpha_2 \end{array}$$

Bott-Samelson varieties

We denote the set of functions on $\mathcal{E}_I = \hat{X}_I^T$ with values in S by $F(\mathcal{E}_I; S)$. It is a free S-module with basis $f_L, L \in \mathcal{E}_I$ defined by $f_L(L') = \delta_{L,L'}$, and have a ring structure given by $f_L \cdot f_{L'} = \delta_{L,L'} f_L$. Moreover, we have $h_T((\hat{X}_I)^T) \cong F(\mathcal{E}_I; S)$.

Theorem (L.-Zhong)

Let I be a sequence of length I. For any two subsets $L, M \subset [I]$ denote $L^c = [I] \backslash L$ and

$$p_{L,M} = \prod_{k \in L} v_{k-1}^M(x_{-\alpha_{i_k}}),$$

where $v_j^M = \prod_{k \in L \cap [j]} s_{i_k}$ Then

$$\mathbf{j}^*(\eta_L) = \sum_{M \subset L^c} a_{L,M} f_M.$$

The map $\mathbf{j}^* : h_T(\hat{X}_I) \to h_T(\hat{X}_I^T)$ is an injection.

â

Example

Consider the case of A_2 . Let $\{\alpha_1, \alpha_2\}$ be the set of simple roots. We consider the Bott-Samelson variety $\hat{X}_I = P_1 \times^B P_2/B$ for I = (1, 2). There are four torus-fixed points, denoted by $\mathcal{P}_2 = \{00, 01, 10, 11\}$. Similarly, denote $(P_1/B)^T$ by $\mathcal{P}_1 = \{0, 1\}$. We have the following commutative diagram:

$$P_{1} \times^{B} P_{2}/B \xleftarrow{j'} \mathcal{P}_{2} = \{00, 01, 10, 11\} .$$

$$\sigma_{2} \left(\bigvee_{p_{2}} \qquad \qquad \bigvee_{p_{2}'} p_{2} \right)$$

$$P_{1}/B \xleftarrow{j^{1}} \mathcal{P}_{1} = \{0, 1\}$$

$$\sigma_{1} \left(\bigvee_{p_{1}} p_{1} \right)$$

$$pt$$

Corollary

Hao Li (SUNY at Albany)

Example

We have

$$(\mathbf{j}')^*(\eta_1) = x_{-\alpha_1}(f_{00} + f_{01}).$$

$$(\mathbf{j}')^*(\eta_2) = x_{-\alpha_2}f_{00} + x_{-\alpha_1-\alpha_2}f_{10}.$$

$$(\mathbf{j}')^*(\eta_1\eta_2) = x_{-\alpha_1}x_{-\alpha_2}f_{00}.$$

In K-theory, $\eta_1 = [(\hat{X}_l)_{01}], \ \eta_2 = [(\hat{X}_l)_{10}], \ \eta_1 \eta_2 = [(\hat{X}_l)_{00}].$ In general, we have

$$\eta_L = [(\hat{X}_I)_{L^c}].$$

∃ ≻

Theorem (L.-Zhong)

If $I = (i_1, ..., i_l)$ with i_j all distinct, then we have

$$im(\mathbf{j}^*) = \{ \sum_{L \subset [I]} a_L f_L | \frac{a_{L_1} - a_{L_2}}{v_{k-1}^{L_1}(x_{-\alpha_{i_k}})} \in S, \ \forall L_1, L_2 \text{ such that } L_1 = L_2 \sqcup \{k\} \}.$$

The Bott-Salmelson varieties \hat{X}_l are GKM spaces if $l = (i_1, ..., i_l)$ with i_j all distinct.

Lemma (Calmes-Zainoulline-Zhong)

For any sequence $I = (i_1, \dots, i_n)$, we have $i^*(\zeta_I) = A_{I^{rev}}(pt_e) = A_{\alpha_{i_n}} \cdots A_{\alpha_{i_1}}(pt_e)$, where

 A_{α} is the algebraic realization of $h_T(G/B) \xrightarrow{\pi_*} h_T(G/P_{\alpha}) \xrightarrow{\pi^*} h_T(G/B)$. pt_e is the image of $h_T(e/B) \xrightarrow{(i_e)_*} h_T(G/B) \xrightarrow{(i_e)^*} h_T(e/B)$

Lemma

Let I be a sequence of length I and $1 \le k \le I$. Denote by I_k the subsequence of I obtained by removing the k-th term from I. Then $i^*((q_I)_*(\eta_k)) = A_{I_k^{rev}}(pt_e)$.

イロト イヨト イヨト ・

Theorem (L.-Zhong)

For any sequence $I = (i_1, ..., i_l)$, we have

$$i^* q_{I*}(\eta_L) = \sum_{L_1 \subset L^c} \frac{a_{L,L_1} \cdot v^{L_1}(x_{\prod})}{x_{I,L_1}} f_{v^{L_1}}, \quad x_{\prod} := \prod_{\alpha < 0} x_\alpha \in S,$$

where $v^L := v_l^L = \prod_{k \in L} s_{i_k}$, and $x_{l,L} = \prod_{1 \le j \le l} v_j^L(x_{-i_j})$. Note that a priori the coefficients of $f_{v^{L_1}}$ belong to S.

Corollary

Let I be any sequence of length I. For any $L \subset [I]$, denote by $q_L : \hat{X}_L \to G/B$. Then $q_{I*}(\eta_L) = q_{L^c*}(1)$.

- 4月 - 4 日 - 4 日 - - - 日

Corollary

For any $u \in h_T(pt)$, we have

$$\mathbf{c}'(u)\cdot\zeta_w=\sum_{L\subset [\ell(w)]}\theta_{I,L}(u)\zeta_{L^c},$$

where
$$\zeta_{L^{c}} = q_{L^{c}*}(1)$$
, $\theta_{I,L} = \theta_{1} \cdots \theta_{I}$ with
 $\theta_{j} = \begin{cases} \Delta_{-\alpha_{i_{j}}} = X_{-\alpha_{i_{j}}}, & \text{if } j \in L, \\ s_{i_{j}}, & \text{otherwise,} \end{cases}$ and $\mathbf{c}'(x_{\lambda}) = c_{1}(\mathcal{L}_{\lambda}).$

∃ ⊳.

- Calmes, Baptiste, Kirill Zainoulline, and Changlong Zhong.
 Equivariant oriented cohomology of flag varieties. Doc. Math., Extra Volume: Alexander S. Merkurjev's Sixtieth Birthday (2015), 113-144.
- Calmes, Baptiste, Viktor Petrov, and Kirill Zainoulline. Invariants, torsion indices and oriented cohomology of complete flags.Ännales Scientifiques de l'Ecole Normale Superieure. Vol. 46. No. 3. 2013.
- Willems, Matthieu. "Cohomologie équivariante des tours de Bott et calcul de Schubert équivariant." Journal of the Institute of Mathematics of Jussieu 5.1 (2006): 125.
- Li, Hao, and Changlong Zhong. "On equivariant oriented cohomology of Bott-Samelson varieties." arXiv preprint arXiv:2004.07680 (2020).

Thank you

イロト イヨト イヨト