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Curves and Tangent Spaces

Setup:

I X = a Schubert variety in the generalized flag variety G/P
I x = a T-fixed point of X.

We study two spaces:

I Tx(X) = tangent space to X at x
I TEx(X) = span of tangent lines to T-invariant curves

through x

These spaces are characterized by their weights: Φtan and Φcur

respectively.

Known:

I Φcur ⊆ Φtan

I Equality in type A.



Curves and Tangent Spaces

I The set Φcur of curve weights is relatively easy to
understand.

I Φcur only depends on the Weyl group

I The tangent space weights Φtan is more difficult.
I Depends on the root system, not just the Weyl group
I Described for classical groups (Lakshmibai, Seshadri):

complicated
I No uniform description
I Not known in exceptional types



Curves and Tangent Spaces
Main Result

The main result of this talk proves a relation between the sets
Φtan and Φcur.

If R is a subset of a vector space, let ConeA R denote the set of
non-negative linear combinations of elements of R, with
coefficients in the ring A. In this talk, A will be either Z or Q.

Theorem
Suppose G is of classical type.

Φtan ⊆ ConeA Φcur.

I This theorem holds with A = Q in all types; for simply
laced types it also holds with A = Z.

I Expected to be true in exceptional types, but part of the
argument involves a case by case check.



Curves and Tangent Spaces

Equivalent formulations:

I Φtan and Φcur generate the same cone over A.
I Φtan and Φcur have the same A-indecomposable elements.

In certain situations, one can prove more.

Theorem
Suppose that G is simply laced and that either

1. G/P is cominuscule
2. x is a cominuscule Weyl group element.

Then Φtan = Φcur.



Notation

To explain these results we need a little notation.

I G = simple algebraic group
I B = Borel subgroup, B− = opposite Borel subgroup
I T = maximal torus contained in B
I B = TU, B− = TU−

I X = G/B, the flag variety
I W = Weyl group, equipped with Bruhat order
I The T-fixed points of X are xB for x ∈W. Often write x for

xB.



More Notation

I Schubert variety Xw = B− · wB ⊂ X
I T-fixed points in Xw are the xB with x ≥ w
I Kazhdan-Lusztig variety Yw

x = Xw ∩UxB.
I Near x, Xw looks like the product of Yw

x and a
representation of T, so the results of the paper are proved
by studying Yw

x

I Using the Kazhdan-Lusztig variety in place of the Schubert
variety, define tangent and curve weights ΦKL

tan and ΦKL
cur.

I The main result follows from the stronger statement

ΦKL
tan ⊆ ConeA ΦKL

cur.



The 0-Hecke algebra

This result relies on equivariant K-theory and the 0-Hecke
algebra.

Let T̂ = Hom(T,Gm). The representation ring R(T) is the ring
spanned by eλ for λ ∈ T̂, with multiplication eλeµ = eλ+µ.

Definition
The 0-Hecke algebra is a free R(T)-algebra with basis Hu, for
u ∈W. Multiplication: Let s be a simple reflection.

I HsHu = Hsu if l(su) > l(u)

I HsHu = Hu if l(su) < l(u)

I H2
s = Hs

I H1 is the identity element.



The Demazure product and inversion sets

Suppose s = (s1, s2, . . . , sl), where si = sαi is a simple reflection.
This expression need not be reduced.

I The Demazure product zs ∈W is defined by the formula

Hs1 · · ·Hsl = Hzs .

I We have zs ≥ s1s2 · · · sl with equality if s is reduced.

Now suppose s is a reduced expression for x ∈W.

I Define γ1 = α1, γ2 = s1(α2), γ3 = s1s2(α3), . . ..
I Then I(x−1) = {γ1, γ2, . . . , γ`}.

For the rest of this talk we will fix x and the reduced expression
s. We denote I(x−1) by S.



Weights on inversion sets
Recall that S = {γ1, γ2, . . . , γ`}. Let si denote the sequence
obtained by deleting the reflection si from s. Define two maps
z, x : S→W by the rule

z(γi) = zsi

and
x(γi) = s1s2 · · · ŝi · · · s`.

Write
zi = z(γi), xi = x(γi).

Given w ∈W, we define

Sz≥w = {γi ∈ S | zi ≥ w}

and
Sx≥w = {γi ∈ S | xi ≥ w}.



Curve weights and tangent weights

Carrell-Peterson proved that

ΦKL
cur = Sx≥w

The connection with tangent spaces is due to the following
result:

Theorem

ΦKL
tan ⊆ ConeZ(Sz≥w).



Relating Sz≥w and Sx≥w

Our main result is a consequence of the following theorem.

Theorem
ConeA Sz≥w = ConeA Sx≥w.

I Since zi ≥ xi, the inclusion ConeA Sz≥w ⊇ ConeA Sx≥w is
immediate.

I The reverse inclusion is proved by introducing some
notions of decomposability of weights and relating them.



Decomposability

Definition

1. A linear combination α =
∑

ciαi, with ci ∈ A is said to be
A-increasing if each z(αi) ≥ z(α).

2. An iso-decomposition is a Q-decomposition of the form
α = cα1 + cα2 with ‖α1‖ = ‖α2‖.

An element without one of these decompositions (relative to
some fixed set of roots) is called increasing A-indecomposable
or iso-indecomposable, respectively.



Decomposability

The outline of the proof is as follows.

1. Every element of Sz≥w can be written as an increasing A-
linear combination of increasing A indecomposable
elements which lie in Sz≥w.

2. Increasing A indecomposable elements are
iso-indecomposable.

3. Iso-indecomposable elements γi satisfy zi = xi.

Hence:

I Every element of Sz≥w is a positive A linear combination of
elements which lie in Sx≥w.

I Thus Sz≥w ⊆ ConeA Sx≥w, completing the proof.



Comments on the proof

The fact that every element of S can be decomposed into
indecomposables requires more effort than might be expected
because we are using Q coefficients, and so a naive approach to
decomposing may not terminate.



Comments on the proof
Example

Suppose Φ is of type B2, S = Φ+ = {ε1, ε2, ε1 − ε2, ε1 + ε2}. The
element ε1 has a rational decomposition

ε1 =
1
2

(ε1 + ε2) +
1
2

(ε1 − ε2).

The long root ε1 + ε2 has a rational decomposition as a sum of
the short roots ε1 and ε2. ε1 + ε2 = (ε1) + (ε2). Decompose the
summand ε1 as above:

ε1 =
1
2

(1
2

(ε1 + ε2) +
1
2

(ε1 − ε2) + ε2

)
+

1
2

(ε1 − ε2).

This process can be repeated indefinitely without terminating.
In this example, the indecomposables are {ε1 − ε2, ε2}, and
ε1 = (ε1 − ε2) + ε2 is the desired Q decomposition of ε1 by
indecomposables.



Iso-indecomposability

Iso-indecomposability enters into the picture as follows. Recall
that s = (s1, s2, . . . , sl) and si is the sequence obtained by
deleting the reflection si from s. zi is the Demazure product of si
and xi is the product of the elements in si.

I If si is reduced, then zi = xi.
I If si is not reduced, then γi is iso-decomposable.
I More precisely, one can find j < i < k such that |γj| = |γi|

and
cγi = γj + γk.

I Moreover, zj ≥ zi and zk ≥ zi so this decomposition is
increasing.


