Tangent spaces and T-stable curves of Schubert varieties

William Graham and Victor Kreiman

Curves and Tangent Spaces

Setup:

- $X=$ a Schubert variety in the generalized flag variety G / P
- $x=$ a T-fixed point of X.

We study two spaces:

- $T_{x}(X)=$ tangent space to X at x
- $T E_{x}(X)=$ span of tangent lines to T-invariant curves through x

These spaces are characterized by their weights: $\Phi_{\tan }$ and $\Phi_{\text {cur }}$ respectively.
Known:

- $\Phi_{\text {cur }} \subseteq \Phi_{\text {tan }}$
- Equality in type A.

Curves and Tangent Spaces

- The set $\Phi_{\text {cur }}$ of curve weights is relatively easy to understand.
- $\Phi_{\text {cur }}$ only depends on the Weyl group
- The tangent space weights $\Phi_{\tan }$ is more difficult.
- Depends on the root system, not just the Weyl group
- Described for classical groups (Lakshmibai, Seshadri): complicated
- No uniform description
- Not known in exceptional types

Curves and Tangent Spaces

Main Result

The main result of this talk proves a relation between the sets $\Phi_{\text {tan }}$ and $\Phi_{\text {cur }}$.
If R is a subset of a vector space, let Cone $_{A} R$ denote the set of non-negative linear combinations of elements of R, with coefficients in the ring A. In this talk, A will be either \mathbf{Z} or \mathbf{Q}.

Theorem

Suppose G is of classical type.

$$
\Phi_{\mathrm{tan}} \subseteq \mathrm{Cone}_{A} \Phi_{\mathrm{cur}}
$$

- This theorem holds with $A=\mathbf{Q}$ in all types; for simply laced types it also holds with $A=\mathbf{Z}$.
- Expected to be true in exceptional types, but part of the argument involves a case by case check.

Curves and Tangent Spaces

Equivalent formulations:

- $\Phi_{\tan }$ and $\Phi_{\text {cur }}$ generate the same cone over A.
- Φ_{tan} and $\Phi_{\text {cur }}$ have the same A-indecomposable elements.

In certain situations, one can prove more.
Theorem
Suppose that G is simply laced and that either

1. G / P is cominuscule
2. x is a cominuscule Weyl group element.

Then $\Phi_{\tan }=\Phi_{\text {cur }}$.

Notation

To explain these results we need a little notation.

- $G=$ simple algebraic group
- $B=$ Borel subgroup, $B^{-}=$opposite Borel subgroup
- $T=$ maximal torus contained in B
- $B=T U, B^{-}=T U^{-}$
- $X=G / B$, the flag variety
- $W=$ Weyl group, equipped with Bruhat order
- The T-fixed points of X are $x B$ for $x \in W$. Often write x for $x B$.

More Notation

- Schubert variety $X^{w}=\overline{B^{-} \cdot w B} \subset X$
- T-fixed points in X^{w} are the $x B$ with $x \geq w$
- Kazhdan-Lusztig variety $Y_{x}^{w}=X^{w} \cap U x B$.
- Near x, X^{w} looks like the product of Y_{x}^{w} and a representation of T, so the results of the paper are proved by studying Y_{x}^{w}
- Using the Kazhdan-Lusztig variety in place of the Schubert variety, define tangent and curve weights $\Phi_{\mathrm{tan}}^{\mathrm{KL}}$ and $\Phi_{\text {cur }}^{\mathrm{KL}}$.
- The main result follows from the stronger statement

$$
\Phi_{\mathrm{tan}}^{\mathrm{KL}} \subseteq \mathrm{Cone}_{A} \Phi_{\mathrm{cur}}^{\mathrm{KL}}
$$

The 0-Hecke algebra

This result relies on equivariant K-theory and the 0 -Hecke algebra.
Let $\hat{T}=\operatorname{Hom}\left(T, \mathbf{G}_{m}\right)$. The representation ring $R(T)$ is the ring spanned by e^{λ} for $\lambda \in \hat{T}$, with multiplication $e^{\lambda} e^{\mu}=e^{\lambda+\mu}$.

Definition

The 0-Hecke algebra is a free $R(T)$-algebra with basis H_{u}, for $u \in W$. Multiplication: Let s be a simple reflection.

- $H_{s} H_{u}=H_{s u}$ if $l(s u)>l(u)$
- $H_{s} H_{u}=H_{u}$ if $l(s u)<l(u)$
- $H_{s}^{2}=H_{s}$
- H_{1} is the identity element.

The Demazure product and inversion sets

Suppose $\mathbf{s}=\left(s_{1}, s_{2}, \ldots, s_{l}\right)$, where $s_{i}=s_{\alpha_{i}}$ is a simple reflection. This expression need not be reduced.

- The Demazure product $z_{\mathbf{s}} \in W$ is defined by the formula

$$
H_{s_{1}} \cdots H_{s_{l}}=H_{z_{\mathbf{s}}}
$$

- We have $z_{\mathbf{s}} \geq s_{1} s_{2} \cdots s_{l}$ with equality if \mathbf{s} is reduced.

Now suppose \mathbf{s} is a reduced expression for $x \in W$.

- Define $\gamma_{1}=\alpha_{1}, \gamma_{2}=s_{1}\left(\alpha_{2}\right), \gamma_{3}=s_{1} s_{2}\left(\alpha_{3}\right), \ldots$.
- Then $I\left(x^{-1}\right)=\left\{\gamma_{1}, \gamma_{2}, \ldots, \gamma_{\ell}\right\}$.

For the rest of this talk we will fix x and the reduced expression s. We denote $I\left(x^{-1}\right)$ by S.

Weights on inversion sets

Recall that $S=\left\{\gamma_{1}, \gamma_{2}, \ldots, \gamma_{\ell}\right\}$. Let \mathbf{s}_{i} denote the sequence obtained by deleting the reflection s_{i} from s. Define two maps $z, x: S \rightarrow W$ by the rule

$$
z\left(\gamma_{i}\right)=z_{\mathbf{s}_{i}}
$$

and

$$
x\left(\gamma_{i}\right)=s_{1} s_{2} \cdots \hat{s}_{i} \cdots s_{\ell}
$$

Write

$$
z_{i}=z\left(\gamma_{i}\right), x_{i}=x\left(\gamma_{i}\right)
$$

Given $w \in W$, we define

$$
S_{z \geq w}=\left\{\gamma_{i} \in S \mid z_{i} \geq w\right\}
$$

and

$$
S_{x \geq w}=\left\{\gamma_{i} \in S \mid x_{i} \geq w\right\}
$$

Curve weights and tangent weights

Carrell-Peterson proved that

$$
\Phi_{\mathrm{cur}}^{\mathrm{KL}}=S_{x \geq w}
$$

The connection with tangent spaces is due to the following result:

Theorem

$$
\Phi_{\tan }^{\mathrm{KL}} \subseteq \operatorname{Cone}_{\mathbf{Z}}\left(S_{z \geq w}\right)
$$

Relating $S_{z \geq w}$ and $S_{x \geq w}$

Our main result is a consequence of the following theorem.
Theorem
$\operatorname{Cone}_{A} S_{z \geq w}=\operatorname{Cone}_{A} S_{x \geq w}$.

- Since $z_{i} \geq x_{i}$, the inclusion Cone $_{A} S_{z \geq w} \supseteq$ Cone $_{A} S_{x \geq w}$ is immediate.
- The reverse inclusion is proved by introducing some notions of decomposability of weights and relating them.

Decomposability

Definition

1. A linear combination $\alpha=\sum c_{i} \alpha_{i}$, with $c_{i} \in A$ is said to be A-increasing if each $z\left(\alpha_{i}\right) \geq z(\alpha)$.
2. An iso-decomposition is a Q-decomposition of the form $\alpha=c \alpha_{1}+c \alpha_{2}$ with $\left\|\alpha_{1}\right\|=\left\|\alpha_{2}\right\|$.

An element without one of these decompositions (relative to some fixed set of roots) is called increasing A-indecomposable or iso-indecomposable, respectively.

Decomposability

The outline of the proof is as follows.

1. Every element of $S_{z \geq w}$ can be written as an increasing A linear combination of increasing A indecomposable elements which lie in $S_{z \geq w}$.
2. Increasing A indecomposable elements are iso-indecomposable.
3. Iso-indecomposable elements γ_{i} satisfy $z_{i}=x_{i}$.

Hence:

- Every element of $S_{z \geq w}$ is a positive A linear combination of elements which lie in $S_{x \geq w}$.
- Thus $S_{z \geq w} \subseteq$ Cone $_{A} S_{x \geq w}$, completing the proof.

Comments on the proof

The fact that every element of S can be decomposed into indecomposables requires more effort than might be expected because we are using \mathbf{Q} coefficients, and so a naive approach to decomposing may not terminate.

Comments on the proof

Example

Suppose Φ is of type $B_{2}, S=\Phi^{+}=\left\{\epsilon_{1}, \epsilon_{2}, \epsilon_{1}-\epsilon_{2}, \epsilon_{1}+\epsilon_{2}\right\}$. The element ϵ_{1} has a rational decomposition

$$
\epsilon_{1}=\frac{1}{2}\left(\epsilon_{1}+\epsilon_{2}\right)+\frac{1}{2}\left(\epsilon_{1}-\epsilon_{2}\right) .
$$

The long root $\epsilon_{1}+\epsilon_{2}$ has a rational decomposition as a sum of the short roots ϵ_{1} and $\epsilon_{2} \cdot \epsilon_{1}+\epsilon_{2}=\left(\epsilon_{1}\right)+\left(\epsilon_{2}\right)$. Decompose the summand ϵ_{1} as above:

$$
\epsilon_{1}=\frac{1}{2}\left(\frac{1}{2}\left(\epsilon_{1}+\epsilon_{2}\right)+\frac{1}{2}\left(\epsilon_{1}-\epsilon_{2}\right)+\epsilon_{2}\right)+\frac{1}{2}\left(\epsilon_{1}-\epsilon_{2}\right) .
$$

This process can be repeated indefinitely without terminating. In this example, the indecomposables are $\left\{\epsilon_{1}-\epsilon_{2}, \epsilon_{2}\right\}$, and $\epsilon_{1}=\left(\epsilon_{1}-\epsilon_{2}\right)+\epsilon_{2}$ is the desired \mathbf{Q} decomposition of ϵ_{1} by indecomposables.

Iso-indecomposability

Iso-indecomposability enters into the picture as follows. Recall that $\mathbf{s}=\left(s_{1}, s_{2}, \ldots, s_{l}\right)$ and \mathbf{s}_{i} is the sequence obtained by deleting the reflection s_{i} from $\mathbf{s} . z_{i}$ is the Demazure product of \mathbf{s}_{i} and x_{i} is the product of the elements in \mathbf{s}_{i}.

- If \mathbf{s}_{i} is reduced, then $z_{i}=x_{i}$.
- If \mathbf{s}_{i} is not reduced, then γ_{i} is iso-decomposable.
- More precisely, one can find $j<i<k$ such that $\left|\gamma_{j}\right|=\left|\gamma_{i}\right|$ and

$$
c \gamma_{i}=\gamma_{j}+\gamma_{k}
$$

- Moreover, $z_{j} \geq z_{i}$ and $z_{k} \geq z_{i}$ so this decomposition is increasing.

