POSITIVITY IN PETERSON SCHUBERT CALCULUS JOINT WORK WITH LEONARDO MIHALCEA AND RAHUL SINGH

Rebecca Goldin

George Mason University

AMS Special Session on Schubert Calculus

MARCH 21, 2021 1/17

CAST OF CHARACTERS

 ${\it G}$ complex semi-simple Lie group, with Lie algebra ${\mathfrak g}$

B choice of Borel, with Lie algebra \mathfrak{b}

B⁻ opposite Borel

 $T = B \cap B^-$ a maximal torus

 Δ set of positive simple roots for *G*.

S circle subgroup of *T*, generated by $h \in L(T)$ with $\alpha(h) = 2$ for all $\alpha \in \Delta$ $t = \alpha|_S$

 \mathfrak{g}_{α} root space of α

DEFINITION (PETERSON VARIETY)

Let $e \in \bigoplus_{\alpha \in \Delta} \mathfrak{g}_{\alpha}$ be a principal nilpotent element. A Peterson variety may be given by

$$\mathbf{P} = \{ gB \in G/B : Ad(g^{-1})e \in \mathfrak{b} \oplus \bigoplus_{\alpha \in \Delta} \mathfrak{g}_{-\alpha} \}$$

CAST OF CHARACTERS

 ${\it G}$ complex semi-simple Lie group, with Lie algebra ${\mathfrak g}$

B choice of Borel, with Lie algebra \mathfrak{b}

B⁻ opposite Borel

 $T = B \cap B^-$ a maximal torus

 Δ set of positive simple roots for *G*.

S circle subgroup of *T*, generated by $h \in L(T)$ with $\alpha(h) = 2$ for all $\alpha \in \Delta$ $t = \alpha|_S$

 \mathfrak{g}_{α} root space of α

DEFINITION (PETERSON VARIETY)

Let $e \in \bigoplus_{\alpha \in \Delta} \mathfrak{g}_{\alpha}$ be a principal nilpotent element. A Peterson variety may be given by

$$\mathbf{P} = \{ gB \in G/B : Ad(g^{-1})e \in \mathfrak{b} \oplus igoplus_{lpha \in \Delta} \mathfrak{g}_{-lpha} \}$$

< □ > < @ > < B > < B >

TYPE A PETERSON

Let *N* be the matrix whose Jordan canonical form consists of one block with 1's on the superdiagonal and 0's elsewhere. Then $\mathbf{P} \subseteq Fl(n; \mathbb{C})$ is the collection of flags over \mathbb{C}^n satisfying $NV_i \subseteq V_{i+1}$.

THEOREM (TYMOCZKO, PRECUP)

P has a paving by affines.

EXAMPLE (CELLS FOR TYPE A, N=3)

$$\mathbf{P} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \cup \begin{pmatrix} a & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \cup \begin{pmatrix} 1 & 0 & 0 \\ 0 & b & 1 \\ 0 & 1 & 0 \end{pmatrix} \cup \begin{pmatrix} c & d & 1 \\ d & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}$$

THEOREM (G.-MIHALCEA-SINGH)

The cell closures of this affine paving are smaller Peterson varieties.

TYPE A PETERSON

Let *N* be the matrix whose Jordan canonical form consists of one block with 1's on the superdiagonal and 0's elsewhere. Then $\mathbf{P} \subseteq Fl(n; \mathbb{C})$ is the collection of flags over \mathbb{C}^n satisfying $NV_i \subseteq V_{i+1}$.

THEOREM (TYMOCZKO, PRECUP)

P has a paving by affines.

EXAMPLE (CELLS FOR TYPE A, N=3)

$$\mathbf{P} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \cup \begin{pmatrix} a & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \cup \begin{pmatrix} 1 & 0 & 0 \\ 0 & b & 1 \\ 0 & 1 & 0 \end{pmatrix} \cup \begin{pmatrix} c & d & 1 \\ d & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}$$

THEOREM (G.-MIHALCEA-SINGH)

The cell closures of this affine paving are smaller Peterson varieties.

TYPE A PETERSON

Let *N* be the matrix whose Jordan canonical form consists of one block with 1's on the superdiagonal and 0's elsewhere. Then $\mathbf{P} \subseteq Fl(n; \mathbb{C})$ is the collection of flags over \mathbb{C}^n satisfying $NV_i \subseteq V_{i+1}$.

THEOREM (TYMOCZKO, PRECUP)

P has a paving by affines.

$$\mathbf{P} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \cup \begin{pmatrix} a & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \cup \begin{pmatrix} 1 & 0 & 0 \\ 0 & b & 1 \\ 0 & 1 & 0 \end{pmatrix} \cup \begin{pmatrix} c & d & 1 \\ d & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}$$

THEOREM (G.-MIHALCEA-SINGH)

The cell closures of this affine paving are smaller Peterson varieties.

TYPE A PETERSON

Let *N* be the matrix whose Jordan canonical form consists of one block with 1's on the superdiagonal and 0's elsewhere. Then $\mathbf{P} \subseteq Fl(n; \mathbb{C})$ is the collection of flags over \mathbb{C}^n satisfying $NV_i \subseteq V_{i+1}$.

THEOREM (TYMOCZKO, PRECUP)

P has a paving by affines.

$$\mathbf{P} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \cup \begin{pmatrix} a & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \cup \begin{pmatrix} 1 & 0 & 0 \\ 0 & b & 1 \\ 0 & 1 & 0 \end{pmatrix} \cup \begin{pmatrix} c & d & 1 \\ d & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}$$

THEOREM (G.-MIHALCEA-SINGH)

The cell closures of this affine paving are smaller Peterson varieties.

(GMU)

PETERSON VARIETY FIXED POINTS

Fixed points

$$\mathbf{P}^{\mathcal{S}} \leftrightarrow \{ w_{I} : I \subset \Delta \}$$

Weyl group elements realizable as the longest words w_l for subsets *l* of the simple roots.

EXAMPLE

For n = 3 in type A, the fixed points are

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}$$

PRIMER ON EQUIVARIANT COHOMOLOGY I

Schubert varieties $X_u = \overline{BuB}/B$ for $u \in W$. Then there is a dual relationship

 $\{[X_u]\}_{u\in W} \rightsquigarrow \{\sigma_u\}_{u\in W}$

where $\sigma_u := [X^u]$.

 $H^*_T(G/B)$ is a free module over $H^*_T(pt)$, with basis $\{\sigma_w\}$. Therefore,

$$\sigma_{u} \cdot \sigma_{v} = \sum_{w} c_{u,v}^{w} \sigma_{w}$$

for some $c_{u,v}^w \in H_T^*(pt)$.

THEOREM (GRAHAM, 1999)

The polynomials $c_{u,v}^w \in H_T^*(pt)$ are polynomials in the simple roots with nonnegative coefficients.

A basis for $H^*_S(\mathbf{P})$

THEOREM (HARADA-TYMOCZKO, DRELLICH, G-MIHALCEA-SINGH)

Pick a subset $A \subset \Delta$. For each A, choose a Coxeter element v_A i.e. a product $s_{\alpha_1} \cdots s_{\alpha_k}$ over all elements $\alpha_i \in A$. Define

$$p_A=i^*(\sigma_{v_A}),$$

where σ_{v_A} is the S-equivariant Schubert class obtained by restricting the T action to S. Then $H_S^*(\mathbf{P})$ is a free module over $H_S^*(pt)$ with basis $\{p_A\}$.

 $H_S^*(\mathbf{P})$ is a free module over $H_S^*(pt)$, with basis $\{p_A\}$. Therefore

$$p_A \cdot p_B = \sum_C b^C_{A,B} p_C$$

defines equivariant constants $b_{A,B}^C \in H_S^*(pt) \cong \mathbb{C}[t]$. **Remark.** We write p_A but it depends on v_A .

A basis for $H^*_S(\mathbf{P})$

THEOREM (HARADA-TYMOCZKO, DRELLICH, G-MIHALCEA-SINGH)

Pick a subset $A \subset \Delta$. For each A, choose a Coxeter element v_A i.e. a product $s_{\alpha_1} \cdots s_{\alpha_k}$ over all elements $\alpha_i \in A$. Define

$$p_A=i^*(\sigma_{v_A}),$$

where σ_{v_A} is the S-equivariant Schubert class obtained by restricting the T action to S. Then $H_S^*(\mathbf{P})$ is a free module over $H_S^*(pt)$ with basis $\{p_A\}$.

 $H_{S}^{*}(\mathbf{P})$ is a free module over $H_{S}^{*}(pt)$, with basis $\{p_{A}\}$. Therefore

$$p_A \cdot p_B = \sum_C b^C_{A,B} p_C$$

defines equivariant constants $b_{A,B}^C \in H_S^*(pt) \cong \mathbb{C}[t]$. Remark. We write p_A but it depends on v_A .

(GMU)

A basis for $H^*_S(\mathbf{P})$

THEOREM (HARADA-TYMOCZKO, DRELLICH, G-MIHALCEA-SINGH)

Pick a subset $A \subset \Delta$. For each A, choose a Coxeter element v_A i.e. a product $s_{\alpha_1} \cdots s_{\alpha_k}$ over all elements $\alpha_i \in A$. Define

$$p_A=i^*(\sigma_{v_A}),$$

where σ_{v_A} is the S-equivariant Schubert class obtained by restricting the T action to S. Then $H_S^*(\mathbf{P})$ is a free module over $H_S^*(pt)$ with basis $\{p_A\}$.

 $H_{S}^{*}(\mathbf{P})$ is a free module over $H_{S}^{*}(pt)$, with basis $\{p_{A}\}$. Therefore

$$p_A \cdot p_B = \sum_C b^C_{A,B} p_C$$

defines equivariant constants $b_{A,B}^C \in H_S^*(pt) \cong \mathbb{C}[t]$. **Remark.** We write p_A but it depends on v_A .

(GMU)

POSITIVITY

THEOREM (G.-MIHALCEA-SINGH)

The structure constants $b_{A,B}^{C} \in H_{S}^{*}(pt)$ defined by

$$p_A \cdot p_B = \sum_C b^C_{A,B} p_C$$

are polynomials in t with non-negative coefficients.

Before we talk about why this is true, a brief interlude...

POSITIVITY

THEOREM (G.-MIHALCEA-SINGH)

The structure constants $b_{A,B}^{C} \in H_{S}^{*}(pt)$ defined by

$$p_A \cdot p_B = \sum_C b^C_{A,B} p_C$$

are polynomials in t with non-negative coefficients.

Before we talk about why this is true, a brief interlude...

A POSITIVE! INTEGRAL! FORMULA IN TYPE A Structure constants $b_{A,B}^{C}$ defined by

$$p_A p_B = \sum_C b^C_{A,B} \ p_C$$

Let
$$\mathcal{T}_{A} = \min(A), \mathcal{H}_{A} = \max(A)$$

 $\mathcal{T}_{A} = 2$
 $\mathcal{H}_{A} = 6$

(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(8)
(7)
(8)
(7)
(8)
(7)
(8)
(7)
(8)
(7)
(8)
(7)
(8)
(7)
(8)
(7)
(8)
(7)
(8)
(7)
(8)
(7)
(8)
(7)
(8)
(7)
(8)
(7)
(8)
(7)
(8)
(7)
(8)
(7)
(8)
(7)
(8)
(7)
(8)
(7)
(8)
(7)
(8)
(7)
(8)
(7)
(8)
(7)
(8)
(7)
(8)
(7)
(8)
(7)
(8)
(7)
(8)
(7)
(8)
(7)
(8)
(7)
(8)
(7)
(8)
(7)
(8)
(7)
(8)
(7)
(8)
(7)
(8)
(7)
(8)
(7)
(8)
(7)
(8)
(7)
(8)
(7)
(8)
(7)
(8)
(7)
(8)
(7)
(8)
(7)
(8)
(7)
(8)
(7)
(8)
(7)
(8)
(7)
(8)
(7)
(8)
(7)
(8)
(7)
(8)
(7)
(8)
(7)
(8)
(7)
(8)
(7)
(8)
(7)
(8)
(7)
(8)
(7)
(8)
(7)
(8)
(7)
(8)
(7)
(8)
(7)
(8)
(7)
(8)
(7)
(8)
(7)
(8)
(7)
(8)
(7)
(8)
(7)
(8)
(7)
(8)
(7)
(8)
(7)
(8)
(7)
(8)
(7)
(8)
(7)
(8)
(7)
(8)
(7)
(8)
(7)
(8)
(7)
(8)
(7)
(8)
(7)
(8)
(7)
(8)
(7)
(8)
(7)
(8)
(7)
(8)
(7)
(8)
(7)
(8)
(7)
(8)
(7)
(8)
(7)
(8)
(7)
(8)
(7)
(8)
(7)
(8)
(7)
(8)
(7)
(8)
(7)
(8)
(7)
(8)
(7)
(8)
(7)
(8)
(7)
(8)
(7)
(8)
(7)
(8)
(7)
(8)
(7)
(8)
(7)
(8)
(7)
(8)
(7)
(8)
(7)
(8)
(7)
(8)
(7)
(8)
(7)
(8)
(7)
(8)
(7)
(8)
(7)
(8)
(7)
(8)
(7)
(8)
(7)
(8)
(7)
(8)
(7)
(8)
(7)
(8)
(7)
(8)
(7)
(8)
(7)
(8)
(7)
(8)
(7)
(8)
(7)
(8)
(7)
(8)
(7)
(8)
(7)
(8)
(7)
(8)
(7)
(8)
(7)
(8)
(7)
(8)
(7)
(8)
(7)
(8)
(7)
(8)
(7)
(8)
(7)
(8)
(7)
(8)
(7)
(8)
(7)
(8)
(7)
(8)
(7)
(8)
(7)
(8)
(7)
(8)
(7)
(8)
(7)
(8)
(7)
(8)
(7)
(8)
(7)
(8)
(7)
(8)
(7)
(8)
(7)
(8)
(7)
(8)
(7)
(8)
(7)
(8)
(7)
(8)
(7)
(8)
(7)
(8)
(7)
(8)
(7)
(8)
(7)
(8)
(7)
(8)
(7)
(8)
(7)
(8)
(7)
(8)
(7)
(8)
(7)
(8)
(7)
(8)
(7)
(8)
(7)
(8)
(7)
(8)
(7)
(8)
(7)
(8)
(7)
(8)
(7)
(8)
(7)
(8)
(7)
(8)
(7)
(8)
(7)
(8)
(7)
(8)
(7)
(8)
(7)
(8)
(7)
(8)
(7)
(8)
(7)
(8)
(7)
(8)
(7)
(8)
(7)
(8)
(7)
(8)
(7)
(8)
(7)
(8)
(7)
(8)
(7)
(8)
(7)
(8)
(7)
(8)
(7)
(8)
(7)
(8)
(7)
(8)
(7)
(8)
(7)
(8)
(7)
(8)
(7)
(8)
(7)
(8)
(7)
(8)
(7)
(8)
(7)
(8)
(7)
(8)
(7)
(8)
(7)
(8)
(7)
(8)
(7)
(8)
(7)
(8)
(7)
(8)
(7)
(8)
(7)
(8)
(7)
(8)
(7)
(8)
(7)
(8)
(7)
(8)
(7)
(8)
(7)
(8)
(7)
(8)
(7)
(8)
(7)
(8)
(7)
(8)
(7)
(8)
(7)
(8)
(7)
(8)
(7)
(8)
(7)
(8)
(7)
(8)
(7)
(8)
(7)
(8)
(7)
(8)
(7)
(8)
(7)
(8)
(7)
(8)
(7)
(7)
(8)
(7)
(8)
(7)
(8)
(7)
(

THEOREM (G.-GORBUTT)

$$b_{A,B}^{C} = d! \begin{pmatrix} \mathcal{H}_{A} - \mathcal{T}_{B} + 1 \\ d, \ \mathcal{T}_{A} - \mathcal{T}_{C}, \ \mathcal{H}_{C} - \mathcal{H}_{B} \end{pmatrix} \begin{pmatrix} \mathcal{H}_{B} - \mathcal{T}_{A} + 1 \\ d, \ \mathcal{T}_{B} - \mathcal{T}_{C}, \ \mathcal{H}_{C} - \mathcal{H}_{A} \end{pmatrix} t^{d}.$$

A POSITIVE! INTEGRAL! FORMULA IN TYPE A Structure constants $b_{A,B}^{C}$ defined by

$$p_A p_B = \sum_C b^C_{A,B} \ p_C$$

Let
$$\mathcal{T}_{A} = \min(A)$$
, $\mathcal{H}_{A} = \max(A)$
 $\mathcal{T}_{A} = 2$ $\mathcal{H}_{A} = 6$
(1) (2) (3) (4) (5) (6) (7) (8) A
(1) (2) (3) (4) (5) (6) (7) (8) B
 $\mathcal{T}_{B} = 4$ $\mathcal{H}_{B} = 7$

THEOREM (G.-GORBUTT)

$$b_{A,B}^{C} = d! \begin{pmatrix} \mathcal{H}_{A} - \mathcal{T}_{B} + 1 \\ d, \ \mathcal{T}_{A} - \mathcal{T}_{C}, \ \mathcal{H}_{C} - \mathcal{H}_{B} \end{pmatrix} \begin{pmatrix} \mathcal{H}_{B} - \mathcal{T}_{A} + 1 \\ d, \ \mathcal{T}_{B} - \mathcal{T}_{C}, \ \mathcal{H}_{C} - \mathcal{H}_{A} \end{pmatrix} t^{d}.$$

A POSITIVE! INTEGRAL! FORMULA IN TYPE A Structure constants b_{AB}^{C} defined by

$$p_A p_B = \sum_C b^C_{A,B} \ p_C$$

Theorem (G.-Gorbutt)

$$b_{A,B}^{C} = d! \begin{pmatrix} \mathcal{H}_{A} - \mathcal{T}_{B} + 1 \\ d, \ \mathcal{T}_{A} - \mathcal{T}_{C}, \ \mathcal{H}_{C} - \mathcal{H}_{B} \end{pmatrix} \begin{pmatrix} \mathcal{H}_{B} - \mathcal{T}_{A} + 1 \\ d, \ \mathcal{T}_{B} - \mathcal{T}_{C}, \ \mathcal{H}_{C} - \mathcal{H}_{A} \end{pmatrix} t^{d}.$$

A POSITIVE! INTEGRAL! FORMULA IN TYPE A Structure constants $b_{A,B}^{C}$ defined by

$$p_A p_B = \sum_C b^C_{A,B} \ p_C$$

THEOREM (G.-GORBUTT)

$$\mathcal{D}_{A,B}^{\mathcal{C}} = d! \begin{pmatrix} \mathcal{H}_{A} - \mathcal{T}_{B} + 1 \\ d, \ \mathcal{T}_{A} - \mathcal{T}_{C}, \ \mathcal{H}_{C} - \mathcal{H}_{B} \end{pmatrix} \begin{pmatrix} \mathcal{H}_{B} - \mathcal{T}_{A} + 1 \\ d, \ \mathcal{T}_{B} - \mathcal{T}_{C}, \ \mathcal{H}_{C} - \mathcal{H}_{A} \end{pmatrix} t^{d}.$$

$$b_{A,B}^{C} = d! \begin{pmatrix} \mathcal{H}_{A} - \mathcal{T}_{B} + 1 \\ d, \ \mathcal{T}_{A} - \mathcal{T}_{C}, \ \mathcal{H}_{C} - \mathcal{H}_{B} \end{pmatrix} \begin{pmatrix} \mathcal{H}_{B} - \mathcal{T}_{A} + 1 \\ d, \ \mathcal{T}_{B} - \mathcal{T}_{C}, \ \mathcal{H}_{C} - \mathcal{H}_{A} \end{pmatrix} t^{d},$$

EXAMPLE Let $A = \{1, 2\}, B = \{2, 3\}$ and $C = \{1, 2, 3\}$, so d = 1. (1)(2)(3)(4)(5)B max $(\mathcal{T}_A,\mathcal{T}_B)=2$

Similarly, $b_{12,23}^{1234} = 3$. All other $b_{12,23}^C = 0$. Thus $p_{12}p_{23} = (6t)p_{123} + 3p_{1234}$.

$$b_{A,B}^{C} = d! \begin{pmatrix} \mathcal{H}_{A} - \mathcal{T}_{B} + 1 \\ d, \ \mathcal{T}_{A} - \mathcal{T}_{C}, \ \mathcal{H}_{C} - \mathcal{H}_{B} \end{pmatrix} \begin{pmatrix} \mathcal{H}_{B} - \mathcal{T}_{A} + 1 \\ d, \ \mathcal{T}_{B} - \mathcal{T}_{C}, \ \mathcal{H}_{C} - \mathcal{H}_{A} \end{pmatrix} t^{d},$$

EXAMPLE

Similarly, $b_{12,23}^{1234} = 3$. All other $b_{12,23}^C = 0$. Thus $p_{12}p_{23} = (6t)p_{123} + 3p_{1234}$.

イロト イロト イヨト イヨト

$$b_{A,B}^{C} = d! \begin{pmatrix} \mathcal{H}_{A} - \mathcal{T}_{B} + 1 \\ d, \ \mathcal{T}_{A} - \mathcal{T}_{C}, \ \mathcal{H}_{C} - \mathcal{H}_{B} \end{pmatrix} \begin{pmatrix} \mathcal{H}_{B} - \mathcal{T}_{A} + 1 \\ d, \ \mathcal{T}_{B} - \mathcal{T}_{C}, \ \mathcal{H}_{C} - \mathcal{H}_{A} \end{pmatrix} t^{d},$$

EXAMPLE

Let
$$A = \{1, 2\}, B = \{2, 3\}$$
 and $C = \{1, 2, 3\}$, so $d = 1$.
 $\mathcal{T}_A = 1$ $\mathcal{H}_A = 2$
1 2 3 4 5 A $\mathcal{T}_C = 1, \mathcal{H}_C = 3$
1 2 3 4 5 B max $(\mathcal{T}_A, \mathcal{T}_B) = 2$
 $\mathcal{T}_B = 2$ $\mathcal{H}_B = 3$ min $(\mathcal{H}_A, \mathcal{H}_B) = 2$
 $b_{12,23}^{123} = 1! \begin{pmatrix} 2-2+1\\ 1,1-1,3-3 \end{pmatrix} \begin{pmatrix} 3-1+1\\ 1,2-1,3-2 \end{pmatrix} t = \begin{pmatrix} 1\\ 1 \end{pmatrix} \frac{3!}{1!1!1!} = 6t.$

Similarly, $b_{12,23}^{1234} = 3$. All other $b_{12,23}^{C} = 0$. Thus $p_{12}p_{23} = (6t)p_{123} + 3p_{1234}$.

$$b_{A,B}^{C} = d! \begin{pmatrix} \mathcal{H}_{A} - \mathcal{T}_{B} + 1 \\ d, \ \mathcal{T}_{A} - \mathcal{T}_{C}, \ \mathcal{H}_{C} - \mathcal{H}_{B} \end{pmatrix} \begin{pmatrix} \mathcal{H}_{B} - \mathcal{T}_{A} + 1 \\ d, \ \mathcal{T}_{B} - \mathcal{T}_{C}, \ \mathcal{H}_{C} - \mathcal{H}_{A} \end{pmatrix} t^{d},$$

EXAMPLE

Let
$$A = \{1, 2\}, B = \{2, 3\}$$
 and $C = \{1, 2, 3\}$, so $d = 1$.
 $\mathcal{T}_A = 1$ $\mathcal{H}_A = 2$
1 2 3 4 5 A $\mathcal{T}_C = 1, \mathcal{H}_C = 3$
1 2 3 4 5 B max $(\mathcal{T}_A, \mathcal{T}_B) = 2$
 $\mathcal{T}_B = 2$ $\mathcal{H}_B = 3$ min $(\mathcal{H}_A, \mathcal{H}_B) = 2$
 $b_{12,23}^{123} = 1! \begin{pmatrix} 2-2+1\\ 1,1-1,3-3 \end{pmatrix} \begin{pmatrix} 3-1+1\\ 1,2-1,3-2 \end{pmatrix} t = \begin{pmatrix} 1\\ 1 \end{pmatrix} \frac{3!}{1!1!1!} = 6t.$

Similarly, $b_{12,23}^{1234} = 3$. All other $b_{12,23}^C = 0$. Thus $p_{12}p_{23} = (6t)p_{123} + 3p_{1234}$.

イロト イタト イヨト イヨト 二日

$$b_{A,B}^{C} = d! \begin{pmatrix} \mathcal{H}_{A} - \mathcal{T}_{B} + 1 \\ d, \ \mathcal{T}_{A} - \mathcal{T}_{C}, \ \mathcal{H}_{C} - \mathcal{H}_{B} \end{pmatrix} \begin{pmatrix} \mathcal{H}_{B} - \mathcal{T}_{A} + 1 \\ d, \ \mathcal{T}_{B} - \mathcal{T}_{C}, \ \mathcal{H}_{C} - \mathcal{H}_{A} \end{pmatrix} t^{d},$$

EXAMPLE

Let
$$A = \{1, 2\}, B = \{2, 3\}$$
 and $C = \{1, 2, 3\}$, so $d = 1$.
 $\mathcal{T}_A = 1$ $\mathcal{H}_A = 2$
1 2 3 4 5 A $\mathcal{T}_C = 1, \mathcal{H}_C = 3$
1 2 3 4 5 B max $(\mathcal{T}_A, \mathcal{T}_B) = 2$
 $\mathcal{T}_B = 2$ $\mathcal{H}_B = 3$ min $(\mathcal{H}_A, \mathcal{H}_B) = 2$
 $b_{12,23}^{123} = 1! {2-2+1 \choose 1, 1-1, 3-3} {3-1+1 \choose 1, 2-1, 3-2} t = {1 \choose 1} \frac{3!}{1!1!1!} = 6t.$

Similarly, $b_{12,23}^{1234} = 3$. All other $b_{12,23}^C = 0$. Thus $p_{12}p_{23} = (6t)p_{123} + 3p_{1234}$.

イロト 不得 トイヨト イヨト 二日

WHY IS PETERSON SCHUBERT CALCULUS POSITIVE?

$$p_A p_B = \sum_C b^C_{A,B} p_C, \quad p_A := \iota^*(\sigma_{v_A})$$

Define Peterson Schubert varieties

$$\mathbf{P}_{A} = \overline{\mathbf{P} \cap Bw_{A}B/B}$$

These are subvarieties of **P** but also subvarieties of G/B. We would like a dual relationship

$$\{[\mathbf{P}_A]\}_{A\subset\Delta} \rightsquigarrow \{p_A\}_{I\subset\Delta}$$

THEOREM (DUALITY) (G.-MIHALCEA-SINGH)

Let A, B be subsets of the set of simple roots Δ and $v_A \in W$ a Coxeter element for A. Then

 $\langle p_A, [\mathbf{P}_B]_S \rangle = \delta_{A,B} m(v_A),$

where $m(v_A) > 0$ is an integer.

Lemma

The intersection $X^{v_A} \cap \mathbf{P}_A$ is a single point, w_A .

Proof. The intersection is *S* invariant, and contains the point w_A . Fixed points of \mathbf{P}_A are of the form w_B for some *B* with $B \subset A$. Fixed points of X^{v_A} are of the form $v \ge v_A$. But $w_B \ge w_A$ implies $A \subset B$. Since it's the only fixed point in a stable invariant space, the intersection is the point.

THEOREM (DUALITY) (G.-MIHALCEA-SINGH)

Let A, B be subsets of the set of simple roots Δ and $v_A \in W$ a Coxeter element for A. Then

 $\langle p_A, [\mathbf{P}_B]_S \rangle = \delta_{A,B} m(v_A),$

where $m(v_A) > 0$ is an integer.

LEMMA

The intersection $X^{v_A} \cap \mathbf{P}_A$ is a single point, w_A .

Proof. The intersection is *S* invariant, and contains the point w_A . Fixed points of \mathbf{P}_A are of the form w_B for some *B* with $B \subset A$. Fixed points of X^{v_A} are of the form $v \ge v_A$. But $w_B \ge w_A$ implies $A \subset B$. Since it's the only fixed point in a stable invariant space, the intersection is the point.

THEOREM (DUALITY) (G.-MIHALCEA-SINGH)

Let A, B be subsets of the set of simple roots Δ and $v_A \in W$ a Coxeter element for A. Then

$$\langle p_A, [\mathbf{P}_B]_S \rangle = \delta_{A,B} m(v_A),$$

where $m(v_A) > 0$ is an integer.

The number $m(v_A)$ is the multiplicity of the intersection.

Diagram	$m(s_1 \cdots s_n)$	Diagram	$m(s_1 \cdots s_n)$
An	1	F ₄	48
B_n, C_n	2 ^{<i>n</i>-1}	E ₆	72
Dn	2 ⁿ⁻²	<i>E</i> ₇	864
G ₂	6	E ₈	51840

TABLE: Values for the pairing $\langle p_A, [\mathbf{P}_A] \rangle$.

(日)

• Schubert calculus is positive

$$\sigma_{u} \cdot \sigma_{v} = \sum_{w} c^{w}_{u,v} \sigma_{w}, \quad c^{w}_{u,v} \in H^{*}_{\mathcal{S}}(pt)$$

• $\implies p_A \cdot p_B = \iota^*(\sigma_{v_A}) \cdot \iota^*(\sigma_{v_B}) = \iota^*(\sigma_{v_A} \cdot \sigma_{v_B}) = \sum_w c^w_{v_A, v_B} \iota^* \sigma_w$

• Thus positivity follows from showing positivity of coefficients here:

$$\iota^*(\sigma_w) = \sum_A b_u^A p_A$$

• Duality theorem implies that b_u^A are positive if and only if the push forwards in homology are positive:

$$\iota_*(\mathbf{P}_A) = \sum_{U} c^U_A[X_U], \quad c^U_A \ge 0.$$

• Schubert calculus is positive

$$\sigma_{u} \cdot \sigma_{v} = \sum_{w} c^{w}_{u,v} \sigma_{w}, \quad c^{w}_{u,v} \in H^{*}_{\mathcal{S}}(pt)$$

• $\implies p_A \cdot p_B = \iota^*(\sigma_{v_A}) \cdot \iota^*(\sigma_{v_B}) = \iota^*(\sigma_{v_A} \cdot \sigma_{v_B}) = \sum_w c^w_{v_A, v_B} \iota^* \sigma_w$

Thus positivity follows from showing positivity of coefficients here:

$$\iota^*(\sigma_w) = \sum_A b_u^A p_A$$

• Duality theorem implies that b_u^A are positive if and only if the push forwards in homology are positive:

$$\iota_*(\mathbf{P}_A) = \sum_{U} c^U_A[X_U], \quad c^U_A \ge 0.$$

• Schubert calculus is positive

$$\sigma_{u} \cdot \sigma_{v} = \sum_{w} c^{w}_{u,v} \sigma_{w}, \quad c^{w}_{u,v} \in H^{*}_{\mathcal{S}}(pt)$$

• $\implies p_A \cdot p_B = \iota^*(\sigma_{v_A}) \cdot \iota^*(\sigma_{v_B}) = \iota^*(\sigma_{v_A} \cdot \sigma_{v_B}) = \sum_w c^w_{v_A, v_B} \iota^* \sigma_w$

Thus positivity follows from showing positivity of coefficients here:

$$\iota^*(\sigma_w) = \sum_A b_u^A p_A$$

 Duality theorem implies that b^A_u are positive if and only if the push forwards in homology are positive:

$$\iota_*(\mathbf{P}_A) = \sum_u c^u_A[X_u], \quad c^u_A \ge 0.$$

• Schubert calculus is positive

$$\sigma_{u} \cdot \sigma_{v} = \sum_{w} c^{w}_{u,v} \sigma_{w}, \quad c^{w}_{u,v} \in H^{*}_{\mathcal{S}}(pt)$$

• $\implies p_A \cdot p_B = \iota^*(\sigma_{v_A}) \cdot \iota^*(\sigma_{v_B}) = \iota^*(\sigma_{v_A} \cdot \sigma_{v_B}) = \sum_w c^w_{v_A, v_B} \iota^* \sigma_w$

Thus positivity follows from showing positivity of coefficients here:

$$\iota^*(\sigma_w) = \sum_A b_u^A p_A$$

• Duality theorem implies that b_u^A are positive if and only if the push forwards in homology are positive:

$$\iota_*(\mathbf{P}_A) = \sum_u c^u_A[X_u], \quad c^u_A \ge 0.$$

THEOREM (GRAHAM POSITIVITY)

Let B' be a connected solvable group with unipotent radical U', and let $T' \subset B'$ be a maximal torus, so that B' = T'U'. Let $\alpha_1, \ldots, \alpha_d$ be the weights of T' acting on Lie(U'). Let X be a scheme with a B'-action, and Y a T'-stable subvariety of X. Then there exist B'-stable subvarieties D_1, \ldots, D_k of X such that in the equivariant homology $H^{T'}_*(X)$,

$$[Y]_{T'}=\sum f_i[D_i]_{T'},$$

where each $f_i \in H^*_{T'}(pt)$ is a linear combination of monomials in $\alpha_1, \ldots, \alpha_d$ with non-negative integer coefficients.

Application:

• Let X = G/B, $Y = \mathbf{P}_I$, T' = S, and B' = SU. The *B'*-stable varieties are Schubert varieties $\{[X_u]\}$. Then $\iota_*(\mathbf{P}_A) = \sum c_A^u[X_u]$ with c_A^u a positive polynomial in *t*.

イロト 不得 トイヨト イヨト 二日

THEOREM (GRAHAM POSITIVITY)

Let B' be a connected solvable group with unipotent radical U', and let $T' \subset B'$ be a maximal torus, so that B' = T'U'. Let $\alpha_1, \ldots, \alpha_d$ be the weights of T' acting on Lie(U'). Let X be a scheme with a B'-action, and Y a T'-stable subvariety of X. Then there exist B'-stable subvarieties D_1, \ldots, D_k of X such that in the equivariant homology $H^{T'}_*(X)$,

$$[Y]_{T'}=\sum f_i[D_i]_{T'},$$

where each $f_i \in H^*_{T'}(pt)$ is a linear combination of monomials in $\alpha_1, \ldots, \alpha_d$ with non-negative integer coefficients.

Application:

• Let X = G/B, $Y = \mathbf{P}_I$, T' = S, and B' = SU. The *B'*-stable varieties are Schubert varieties $\{[X_u]\}$. Then $\iota_*(\mathbf{P}_A) = \sum c_A^u[X_u]$ with c_A^u a positive polynomial in *t*.

• The projection formula implies

$$\langle \iota^*(\sigma_w), [P_B] \rangle = \langle \sigma_w, \iota_*[P_B] \rangle = \langle \sigma_w, \sum_U c_B^u[X_U] \rangle = c_B^w.$$

• c_B^w polynomials in t with nonnegative coefficients

• The Duality Theorem implies

$$\langle \iota^*(\sigma_w), [P_B] \rangle = \sum_A b^A_w \langle p_A, [P_B] \rangle = b^B_w m(v_B)$$

Thus $m(v_B)b^B_w = c^w_B$

- Geometry implies $m(v_A) > 0$.
- Graham positivity implies c^u_A are polynomials in t with nonnegative coefficients. Thus b^A_u are positive.
- Finally

$$p_A p_B = \sum_w c^w_{v_A, v_B} \iota^*(\sigma_w) = \sum_{w, C} c^w_{v_A, v_B} b^C_w p_C$$

• The projection formula implies

$$\langle \iota^*(\sigma_w), [P_B] \rangle = \langle \sigma_w, \iota_*[P_B] \rangle = \langle \sigma_w, \sum_u c_B^u[X_u] \rangle = c_B^w.$$

• c_B^w polynomials in t with nonnegative coefficients

• The Duality Theorem implies

$$\langle \iota^*(\sigma_w), [P_B] \rangle = \sum_A b^A_w \langle p_A, [P_B] \rangle = b^B_w m(v_B)$$

Thus $m(v_B)b^B_w = c^w_B$

- Geometry implies $m(v_A) > 0$.
- Graham positivity implies c^u_A are polynomials in t with nonnegative coefficients. Thus b^A_u are positive.
- Finally

$$p_A p_B = \sum_w c^w_{v_A, v_B} \iota^*(\sigma_w) = \sum_{w, C} c^w_{v_A, v_B} b^C_w p_C$$

The projection formula implies

$$\langle \iota^*(\sigma_w), [P_B] \rangle = \langle \sigma_w, \iota_*[P_B] \rangle = \langle \sigma_w, \sum_u c_B^u[X_u] \rangle = c_B^w.$$

- c_B^w polynomials in t with nonnegative coefficients
- The Duality Theorem implies

$$\langle \iota^*(\sigma_w), [P_B] \rangle = \sum_A b^A_w \langle p_A, [P_B] \rangle = b^B_w m(v_B)$$

Thus $m(v_B)b_w^B = c_B^w$

- Geometry implies $m(v_A) > 0$.
- Graham positivity implies c^u_A are polynomials in t with nonnegative coefficients. Thus b^A_u are positive.
- Finally

$$p_A p_B = \sum_w c^w_{v_A, v_B} \iota^*(\sigma_w) = \sum_{w, C} c^w_{v_A, v_B} b^C_w p_C$$

The projection formula implies

$$\langle \iota^*(\sigma_w), [P_B] \rangle = \langle \sigma_w, \iota_*[P_B] \rangle = \langle \sigma_w, \sum_u c_B^u[X_u] \rangle = c_B^w.$$

- c_B^w polynomials in t with nonnegative coefficients
- The Duality Theorem implies

$$\langle \iota^*(\sigma_w), [P_B] \rangle = \sum_A b^A_w \langle \rho_A, [P_B] \rangle = b^B_w m(v_B)$$

Thus $m(v_B)b_w^B = c_B^w$.

- Geometry implies $m(v_A) > 0$.
- Graham positivity implies c^u_A are polynomials in t with nonnegative coefficients. Thus b^A_u are positive.
- Finally

$$p_A p_B = \sum_w c^w_{v_A, v_B} \iota^*(\sigma_w) = \sum_{w, C} c^w_{v_A, v_B} b^C_w p_C$$

The projection formula implies

$$\langle \iota^*(\sigma_w), [P_B] \rangle = \langle \sigma_w, \iota_*[P_B] \rangle = \langle \sigma_w, \sum_u c_B^u[X_u] \rangle = c_B^w.$$

- c_B^w polynomials in t with nonnegative coefficients
- The Duality Theorem implies

$$\langle \iota^*(\sigma_w), [P_B] \rangle = \sum_A b^A_w \langle p_A, [P_B] \rangle = b^B_w m(v_B)$$

Thus $m(v_B)b_w^B = c_B^w$.

- Geometry implies $m(v_A) > 0$.
- Graham positivity implies c^u_A are polynomials in t with nonnegative coefficients. Thus b^A_u are positive.
- Finally

$$p_A p_B = \sum_w c^w_{v_A, v_B} \iota^*(\sigma_w) = \sum_{w, C} c^w_{v_A, v_B} b^C_w p_C$$

The projection formula implies

$$\langle \iota^*(\sigma_w), [P_B] \rangle = \langle \sigma_w, \iota_*[P_B] \rangle = \langle \sigma_w, \sum_u c_B^u[X_u] \rangle = c_B^w.$$

- c_B^w polynomials in t with nonnegative coefficients
- The Duality Theorem implies

$$\langle \iota^*(\sigma_w), [P_B] \rangle = \sum_A b^A_w \langle p_A, [P_B] \rangle = b^B_w m(v_B)$$

Thus $m(v_B)b_w^B = c_B^w$.

- Geometry implies $m(v_A) > 0$.
- Graham positivity implies c^u_A are polynomials in t with nonnegative coefficients. Thus b^A_u are positive.

Finally

$$p_A p_B = \sum_w c^w_{v_A, v_B} \iota^*(\sigma_w) = \sum_{w, C} c^w_{v_A, v_B} b^C_w p_C$$

The projection formula implies

$$\langle \iota^*(\sigma_w), [P_B] \rangle = \langle \sigma_w, \iota_*[P_B] \rangle = \langle \sigma_w, \sum_u c_B^u[X_u] \rangle = c_B^w.$$

- c_B^w polynomials in t with nonnegative coefficients
- The Duality Theorem implies

$$\langle \iota^*(\sigma_w), [P_B] \rangle = \sum_A b^A_w \langle p_A, [P_B] \rangle = b^B_w m(v_B)$$

Thus $m(v_B)b_w^B = c_B^w$.

- Geometry implies $m(v_A) > 0$.
- Graham positivity implies c^u_A are polynomials in t with nonnegative coefficients. Thus b^A_u are positive.
- Finally

$$p_A p_B = \sum_w c^w_{v_A, v_B} \iota^*(\sigma_w) = \sum_{w, C} c^w_{v_A, v_B} b^C_w p_C$$

REMARKS ON CELLULAR STRUCTURE AND STABILITY

 Peterson varieties have a cellular structure, given by the closures of cells

 $\mathbf{P}_{A}^{\circ}=\mathbf{P}\cap Bw_{A}B/B.$

THEOREM (STABILITY, G-MIHALCEA-SINGH)

Consider the natural inclusion $i : G_A/B_A \hookrightarrow G/B$.

- The Peterson associated to A in G_A/B_A includes into G/B as the intersection with P.
- If $For B \subset A$, we have $i_*([\mathbf{P}_B]_S) = [\mathbf{P}_B]_S$.

So For $B \subset \Delta$, we have $i^*(p_B) = \begin{cases} p_B & \text{if } B \subset A, \\ 0 & \text{otherwise.} \end{cases}$

REMARKS ON CELLULAR STRUCTURE AND STABILITY

 Peterson varieties have a cellular structure, given by the closures of cells

$$\mathbf{P}_{A}^{\circ}=\mathbf{P}\cap Bw_{A}B/B.$$

THEOREM (STABILITY, G-MIHALCEA-SINGH)

Consider the natural inclusion $i : G_A/B_A \hookrightarrow G/B$.

The Peterson associated to A in G_A/B_A includes into G/B as the intersection with P.

Thank you!

イロト イロト イヨト イヨト