▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ ― 匡 … のへで

Equivariant coherent sheaves on a point and Kazhdan-Lusztig bases_____

Matt Douglass National Science Foundation

March 21, 2021

Kazhdan-Lusztig/Chris-Ginzburg isomorphism

KL Isomorphism

Let G be a connected, reductive, complex algebraic group with [G, G] simply connected.

• $T \subseteq B = TU \subseteq G$, the Lie algebras are $\mathfrak{t} \subseteq \mathfrak{b} = \mathfrak{t} + \mathfrak{u} \subseteq \mathfrak{g}$.

•
$$X = X(T)$$
, $A = \mathbb{Z}[X(\mathbb{C}^*)] = \mathbb{Z}[v, v^{-1}]$.

- W = W(G, T) is the Weyl group.
- \mathcal{H}_W is the Iwahori-Hecke of W over A.
- $\mathcal{H} = A[X] \otimes_A \mathcal{H}_W$ is the extended, affine Hecke algebra.

•
$$\overline{G} = G \times \mathbb{C}^*$$
, $\overline{T} = T \times \mathbb{C}^*$. Note that $A[X] = \mathbb{Z}[X(\overline{T})]$.

(日)

• The Steinberg variety of G is

$$Z = T^*(G/B) \times_{\mathfrak{g}} T^*(G/B)$$

= { (x, gB, hB) $\in \mathfrak{g} \times G/B \times G/B \mid g^{-1}x, h^{-1}x \in \mathfrak{u}$ }.

- $z \in \mathbb{C}^*$ acts on \mathfrak{g} via multiplication by z^{-2} and trivially on G/B.
- $\overline{G} = G \times \mathbb{C}^*$ acts diagonally on $\mathfrak{g} \times G/B \times G/B$.
- $K_{\overline{G}}(Z)$ is the Grothendieck "group" of the category of \overline{G} -equivariant coherent sheaves of \mathcal{O}_Z -modules an A-algebra with convolution multiplication (Chriss-Ginzburg).

Theorem (Kazhdan-Lusztig, Chris-Ginzburg, Lusztig)

There is a isomorphism of A-algebras $\varphi \colon \mathcal{H} \xrightarrow{\cong} \mathcal{K}_{\overline{G}}(Z)$

(a)

Extended affine Weyl group, Hecke algebra

- $W_{ex} = X \rtimes W = \{ wt_{\lambda} \mid w \in W, \lambda \in X \}$ is the extended affine Weyl group; $wt_{\lambda} = t_{w(\lambda)}w$.
 - Length function ℓ , Bruhat order \leq , w_0 , Kazhdan-Lusztig cells
 - $\Gamma = \{ z = xw_0y \mid \ell(z) = \ell(x) + \ell(w_0) + \ell(y) \}$ is the lowest two-sided cell.
- $\mathcal{H} = A[X] \otimes_A \mathcal{H}_W$ has bases:
 - Standard basis { $T_z \mid z \in W_{ex}$ }
 - Bernstein basis { $\theta_{\lambda} T_{w} \mid \lambda \in X, w \in W$ }, $T_{w}\theta_{\lambda} = \theta_{w(\lambda)} T_{w} + *$
 - Kazhdan-Lusztig bases { $C_z \mid z \in W_{ex}$ }, { $C'_z \mid z \in W_{ex}$ }

Proposition (Lusztig, ...)

The cell "ideal" corresponding to Γ the two-sided ideal $\mathcal{H}C'_{w_0}\mathcal{H}$.

$\mathcal{H}C_{w_0}\mathcal{H}$ and Schubert calculus?

- $Z_0 = \{0\} \times G/B \times G/B \subseteq Z$
- $ho \in X$ is the sum of the fundamental dominant weights.
- $u: A[X] \otimes_{A[X]^W} A[X] \to \mathcal{H}C'_{w_0}\mathcal{H}, \ u(\theta_\lambda \otimes \theta_\mu) = \theta_{\lambda+\rho}C'_{w_0}\theta_{\mu+\rho}$

Proposition (Lusztig)

The mapping *u* is an A-algebra isomorphism and the diagram of A-algebra homomorphisms commutes:

$$\begin{array}{c|c} A[X] \otimes_{A[X]^{W}} A[X] \xrightarrow{u} \mathcal{H} C'_{w_{0}} \mathcal{H} & \longrightarrow \mathcal{H} \\ & \cong & \downarrow & \cong & \downarrow & \downarrow \\ & \cong & \downarrow & \cong & \downarrow \varphi \\ & \mathcal{K}_{\overline{G}}(G/B \times G/B) \xrightarrow{\cong} \mathcal{K}_{\overline{G}}(Z_{0}) & \longrightarrow \mathcal{K}_{\overline{G}}(Z). \end{array}$$

(日)

•
$$P = L_P U_P$$
, $Q = L_Q U_Q$ parabolic subgroups with $B \subseteq P \cap Q$.

- $\mathfrak{N} \subseteq \mathfrak{g}, \ \mathfrak{N}_P \subseteq \mathfrak{p}, \ \mathfrak{N}_Q \subseteq \mathfrak{q}$ are the respective nilpotent cones.
- $X^{PQ} = \{ (x, gP, hQ) \mid g^{-1}x \in \mathfrak{N}_P, h^{-1}x \in \mathfrak{N}_Q \}.$
- $Y^{PQ} = \{ (x, gP, hQ) \mid g^{-1}x \in \mathfrak{u}_P, h^{-1}x \in \mathfrak{u}_Q \}.$
- $Z^{PQ} = \{ (x, gB, hB) \mid g^{-1}x \in \mathfrak{u}_P, h^{-1}x \in \mathfrak{u}_Q \}.$
- $X^{BB} = Y^{BB} = Z^{BB} = Z$ and there is a cartesian diagram:

◆□→ ◆◎→ ◆□→ ◆□→ □□

GSVs ⊙●

The case P = Q = G00000

Weyl groups W_P , W_Q ; longest elements w_P , w_Q

Theorem

There is a commutative diagram of A-algebra homomorphisms:

$$\begin{array}{ccc} \mathcal{H} & \xrightarrow{\varphi} & \mathcal{K}_{\overline{G}}(Z) \\ & \downarrow_{\chi} & & \downarrow_{\eta_*} \\ \mathcal{L}_{w_P} \mathcal{H} \mathcal{L}_{w_Q} & \xrightarrow{\simeq} & \mathcal{K}_{\overline{G}}(X^{PQ}). \end{array}$$

Corollary

 $C_{w_P}\mathcal{H}C_{w_Q} \cong K_{\overline{G}}(X^{PQ})$ has standard, Bernstein, and **Kazhdan-Lusztig bases**.

(a)

GSVs

The case P = Q = G•0000

The case P = Q = G

From now on take P = Q = G.

•
$$X^{GG} = \{ (x, G, G) \mid x \in \mathfrak{N} \} = \mathfrak{N}.$$

•
$$Y^{GG} = \{ (0, G, G) \} = \{ 0 \}.$$

•
$$Z^{GG} = \{ (0, gB, hB) \} = Z_0.$$

• There are commutative diagrams:

GSVs

The case P = Q = G $0 \bullet 000$

The big picture

KL Isomorphism 0000 The case P = Q = G $00 \bullet 00$

The inclusion $C_{w_0}\mathcal{H}C'_{w_0}\mathcal{H}C_{w_0}\subseteq C_{w_0}\mathcal{H}C_{w_0}$

- $\mathcal{K}_{\overline{G}}(\{0\})$ is the representation ring of \overline{G} , so $C_{w_0}\mathcal{H}C'_{w_0}\mathcal{H}C_{w_0}\cong A[X]^W\cong Z(\mathcal{H}).$
- Define $D = C_{w_0} \theta_{\rho} C'_{w_0} \theta_{\rho} C_{w_0} \in C_{w_0} \mathcal{H} C'_{w_0} \mathcal{H} C_{w_0}.$
- X^+ is the set of dominant weights.
- $s_{\mu} \in A[X]^W$ is the "Schur polynomial."

Proposition

The rule $s_{\mu} \mapsto (-v)^{\ell(w_0)} s_{\mu} D$ ($\mu \in X^+$) defines an A-linear isomorphism $A[X]^W \xrightarrow{\cong} C_{w_0} \mathcal{H} C'_{w_0} \mathcal{H} C_{w_0}$ that is compatible with the various commutative diagrams above.

イロト 不得 トイヨト イヨト

• For $\mu \in X^+$, m_μ is the element with minimal length in $Wt_\mu W$.

• (Ostrik)
$$C_{w_0} \mathcal{H} C_{w_0} \cong K_{\overline{G}}(\mathfrak{N})$$
 has

• standard basis { $T_{\mu}=\mathcal{C}_{\mathsf{w}_0}\mathcal{T}_{\mathsf{m}_{\mu}}\mathcal{C}_{\mathsf{w}_0}\mid \mu\in X^+$ },

• Kazhdan-Lusztig basis {
$$C'_{\mu} = C_{w_0} C'_{m_{\mu}} C_{w_0} \mid \mu \in X^+$$
 }

Theorem*

Suppose $\mu \in X^+$. Then

$$(-1)^{\ell(w_0)} s_\mu D = C'_{\mu+2\rho} \in \mathit{C}_{w_0} \mathcal{H} \mathit{C}_{w_0}.$$

Thus, $\{C'_{\mu+2\rho} \mid \mu \in X^+\}$ is an A-basis of $C_{w_0}\mathcal{H}C'_{w_0}\mathcal{H}C_{w_0}$ (and so determines an A-basis of $K_{\overline{G}}(Y^{GG})$).

What about $K_{\overline{G}}(Y^{PQ})$? $K_{\overline{G}}(Z^{PQ})$? ...

A B > A B > A B >

Thank you!

・ロト ・ 日 ・ ・ ヨ ト ・ ヨ ト