Equivariant coherent sheaves on a point and Kazhdan-Lusztig bases

Matt Douglass
National Science Foundation

March 21, 2021

Kazhdan-Lusztig/Chris-Ginzburg isomorphism

Let G be a connected, reductive, complex algebraic group with [$G, G]$ simply connected.

- $T \subseteq B=T U \subseteq G$, the Lie algebras are $\mathfrak{t} \subseteq \mathfrak{b}=\mathfrak{t}+\mathfrak{u} \subseteq \mathfrak{g}$.
- $X=X(T), A=\mathbb{Z}\left[X\left(\mathbb{C}^{*}\right)\right]=\mathbb{Z}\left[v, v^{-1}\right]$.
- $W=W(G, T)$ is the Weyl group.
- \mathcal{H}_{W} is the Iwahori-Hecke of W over A.
- $\mathcal{H}=A[X] \otimes_{A} \mathcal{H}_{W}$ is the extended, affine Hecke algebra.
- $\bar{G}=G \times \mathbb{C}^{*}, \bar{T}=T \times \mathbb{C}^{*}$. Note that $A[X]=\mathbb{Z}[X(\bar{T})]$.
- The Steinberg variety of G is

$$
\begin{aligned}
Z & =T^{*}(G / B) \times_{\mathfrak{g}} T^{*}(G / B) \\
& =\left\{(x, g B, h B) \in \mathfrak{g} \times G / B \times G / B \mid g^{-1} x, h^{-1} x \in \mathfrak{u}\right\}
\end{aligned}
$$

- $z \in \mathbb{C}^{*}$ acts on \mathfrak{g} via multiplication by z^{-2} and trivially on G / B.
- $\bar{G}=G \times \mathbb{C}^{*}$ acts diagonally on $\mathfrak{g} \times G / B \times G / B$.
- $K_{\bar{G}}(Z)$ is the Grothendieck "group" of the category of \bar{G}-equivariant coherent sheaves of \mathcal{O}_{Z}-modules - an A-algebra with convolution multiplication (Chriss-Ginzburg).

Theorem (Kazhdan-Lusztig, Chris-Ginzburg, Lusztig)

There is a isomorphism of A-algebras $\varphi: \mathcal{H} \xrightarrow{\cong} K_{\bar{G}}(Z)$

Extended affine Weyl group, Hecke algebra

- $W_{\text {ex }}=X \rtimes W=\left\{w t_{\lambda} \mid w \in W, \lambda \in X\right\}$ is the extended affine Weyl group; $w t_{\lambda}=t_{w(\lambda)} w$.
- Length function ℓ, Bruhat order \leq, w_{0}, Kazhdan-Lusztig cells
- $\Gamma=\left\{z=x w_{0} y \mid \ell(z)=\ell(x)+\ell\left(w_{0}\right)+\ell(y)\right\}$ is the lowest two-sided cell.
- $\mathcal{H}=A[X] \otimes_{A} \mathcal{H}_{W}$ has bases:
- Standard basis $\left\{T_{z} \mid z \in W_{\text {ex }}\right\}$
- Bernstein basis $\left\{\theta_{\lambda} T_{w} \mid \lambda \in X, w \in W\right\}$, $T_{w} \theta_{\lambda}=\theta_{w(\lambda)} T_{w}+*$
- Kazhdan-Lusztig bases $\left\{C_{z} \mid z \in W_{\text {ex }}\right\},\left\{C_{z}^{\prime} \mid z \in W_{\text {ex }}\right\}$

Proposition (Lusztig, ...)

The cell "ideal" corresponding to Γ the two-sided ideal $\mathcal{H} C_{w_{0}}^{\prime} \mathcal{H}$.

$\mathcal{H} C_{w_{0}} \mathcal{H}$ and Schubert calculus?

- $Z_{0}=\{0\} \times G / B \times G / B \subseteq Z$
- $\rho \in X$ is the sum of the fundamental dominant weights.
- $u: A[X] \otimes_{A[X] w}^{w} A[X] \rightarrow \mathcal{H} C_{w_{0}}^{\prime} \mathcal{H}, u\left(\theta_{\lambda} \otimes \theta_{\mu}\right)=\theta_{\lambda+\rho} C_{w_{0}}^{\prime} \theta_{\mu+\rho}$

Proposition (Lusztig)

The mapping u is an A-algebra isomorphism and the diagram of A-algebra homomorphisms commutes:

$$
\begin{aligned}
& A[X] \otimes_{A[X] w} A[X] \xrightarrow{u} \underset{\mathcal{H}}{ } C_{w_{0}}^{\prime} \mathcal{H} \longrightarrow \mathcal{H} \\
& \cong \downarrow \quad \cong \downarrow \varphi \\
& K_{\bar{G}}(G / B \times G / B) \longrightarrow K_{\bar{G}}\left(Z_{0}\right) \longrightarrow K_{\bar{G}}(Z) .
\end{aligned}
$$

Generalized Steinberg varieties

- $P=L_{P} U_{P}, Q=L_{Q} U_{Q}$ parabolic subgroups with $B \subseteq P \cap Q$.
- $\mathfrak{N} \subseteq \mathfrak{g}, \mathfrak{N}_{P} \subseteq \mathfrak{p}, \mathfrak{N}_{Q} \subseteq \mathfrak{q}$ are the respective nilpotent cones.
- $X^{P Q}=\left\{(x, g P, h Q) \mid g^{-1} x \in \mathfrak{N}_{P}, h^{-1} x \in \mathfrak{N}_{Q}\right\}$.
- $Y^{P Q}=\left\{(x, g P, h Q) \mid g^{-1} x \in \mathfrak{u}_{P}, h^{-1} x \in \mathfrak{u}_{Q}\right\}$.
- $Z^{P Q}=\left\{(x, g B, h B) \mid g^{-1} x \in \mathfrak{u}_{P}, h^{-1} x \in \mathfrak{u}_{Q}\right\}$.
- $X^{B B}=Y^{B B}=Z^{B B}=Z$ and there is a cartesian diagram:

Weyl groups W_{P}, W_{Q}; longest elements w_{P}, w_{Q}

Theorem

There is a commutative diagram of A-algebra homomorphisms:

Corollary

$C_{w_{P}} \mathcal{H} C_{w_{Q}} \cong K_{\bar{G}}\left(X^{P Q}\right)$ has standard, Bernstein, and Kazhdan-Lusztig bases.

The case $P=Q=G$

From now on take $P=Q=G$.

- $X^{G G}=\{(x, G, G) \mid x \in \mathfrak{N}\}=\mathfrak{N}$.
- $Y^{G G}=\{(0, G, G)\}=\{0\}$.
- $Z^{G G}=\{(0, g B, h B)\}=Z_{0}$.
- There are commutative diagrams:

The big picture

The inclusion $C_{w_{0}} \mathcal{H} C_{w_{0}}^{\prime} \mathcal{H} C_{w_{0}} \subseteq C_{w_{0}} \mathcal{H} C_{w_{0}}$

- $K_{\bar{G}}(\{0\})$ is the representation ring of \bar{G}, so $C_{w_{0}} \mathcal{H} C_{w_{0}}^{\prime} \mathcal{H} C_{w_{0}} \cong A[X]^{W} \cong Z(\mathcal{H})$.
- Define $D=C_{w_{0}} \theta_{\rho} C_{w_{0}}^{\prime} \theta_{\rho} C_{w_{0}} \in C_{w_{0}} \mathcal{H} C_{w_{0}}^{\prime} \mathcal{H} C_{w_{0}}$.
- X^{+}is the set of dominant weights.
- $s_{\mu} \in A[X]^{W}$ is the "Schur polynomial."

Proposition

The rule $s_{\mu} \mapsto(-v)^{\ell\left(w_{0}\right)} s_{\mu} D\left(\mu \in X^{+}\right)$defines an A-linear isomorphism $A[X]^{W} \cong C_{w_{0}} \mathcal{H} C_{w_{0}}^{\prime} \mathcal{H} C_{w_{0}}$ that is compatible with the various commutative diagrams above.

- For $\mu \in X^{+}, m_{\mu}$ is the element with minimal length in $W t_{\mu} W$.
- (Ostrik) $C_{w_{0}} \mathcal{H} C_{w_{0}} \cong K_{\bar{G}}(\mathfrak{N})$ has
- standard basis $\left\{T_{\mu}=C_{w_{0}} T_{m_{\mu}} C_{w_{0}} \mid \mu \in X^{+}\right\}$,
- Kazhdan-Lusztig basis $\left\{C_{\mu}^{\prime}=C_{w_{0}} C_{m_{\mu}}^{\prime} C_{w_{0}} \mid \mu \in X^{+}\right\}$

Theorem*

Suppose $\mu \in X^{+}$. Then

$$
(-1)^{\ell\left(w_{0}\right)} s_{\mu} D=C_{\mu+2 \rho}^{\prime} \in C_{w_{0}} \mathcal{H} C_{w_{0}} .
$$

Thus, $\left\{C_{\mu+2 \rho}^{\prime} \mid \mu \in X^{+}\right\}$is an A-basis of $C_{w_{0}} \mathcal{H} C_{w_{0}}^{\prime} \mathcal{H} C_{w_{0}}$ (and so determines an A-basis of $K_{\bar{G}}\left(Y^{G G}\right)$).

What about $K_{\bar{G}}\left(Y^{P Q}\right) ? K_{\bar{G}}\left(Z^{P Q}\right) ? \ldots$

Thank you!

