A Pieri rule for the quantum K-theory of $\mathbf{O G}(n, 2 n)$

Joint with Pierre-Emmanuel Chaput, Leonardo Mihalcea, Nicolas Perrin
$X=G / P_{X}$ flag variety. $\quad T \subset B \subset P_{X} \subset G$
$W=N_{G}(T) / T$ Weyl group. $\quad W_{X}=N_{P_{X}}(T) / T$ Weyl group of P_{X}. $W^{X} \subset W$ minimal representatives of cosets in W / W_{X}.

Schubert varieties: For $w \in W$ set $X_{w}=\overline{B w \cdot P_{X}}$ and $X^{w}=\overline{B^{-} w \cdot P_{X}}$ $w \in W^{X} \Rightarrow \operatorname{dim}\left(X_{w}\right)=\operatorname{codim}\left(X^{w}, X\right)=\ell(w)$
K-theory ring: $K(X)=\bigoplus_{w \in W^{X}} \mathbb{Z}\left[\mathcal{O}_{X^{w}}\right]$
$\left[\mathcal{O}_{X^{u}}\right] \cdot\left[\mathcal{O}_{X^{v}}\right]=\sum_{w} C_{u, v}^{w}\left[\mathcal{O}_{X^{w}}\right] \quad$ Brion: $(-1)^{\ell(w u v)} C_{u, v}^{w} \geq 0$

Cominuscule simple roots

Cominuscule flag variety: G / P_{α} with α is cominuscule.
Minuscule flag variety: G / P_{α} with α is cominuscule, G simply laced.

Maximal orthogonal Grassmannians

$X=\mathrm{OG}(n+1,2 n+2)=$ component in $\left\{V \subset \mathbb{C}^{2 n+2} \mid V\right.$ max isotropic $\}$

$W^{X} \longleftrightarrow$ strict partitions $\lambda=\left(\lambda_{1}>\lambda_{2}>\cdots>\lambda_{\ell}>0\right)$

$\operatorname{codim}\left(X^{\lambda}, X\right)=|\lambda|=\#$ boxes in λ

Pieri formula for $K(X), \quad X=O G(n+1,2 n+2)$

Let $\lambda \subset \nu$ be strict partitions.
A KOG tableau of shape ν / λ is a labeling of the boxes in ν / λ with integers such that
(1) All rows and columns are strictly increasing, and
(2) Each label is either \leq all labels south-west of it, or \geq all labels south-west of it.

Theorem (B-Ravikumar) $\left[\mathcal{O}_{X(p)}\right] \cdot\left[\mathcal{O}_{X^{\lambda}}\right]=\sum_{\nu} C_{p, \lambda}^{\nu}\left[\mathcal{O}_{X^{\nu}}\right] \quad$ in $K(X)$ $C_{p, \lambda}^{\nu}=(-1)^{|\nu / \lambda|-p} \#$ KOG-tableau of shape ν / λ with content $\{1, \ldots, p\}$

Example: $\nu=(5,3,1), \lambda=(4,1), p=3$. Then $C_{3, \lambda}^{\nu}=-4$.

Gromov-Witten invariants

$M_{d}=\overline{\mathcal{M}}_{0,3}(X, d)=\overline{\left\{f: \mathbb{P}^{1} \rightarrow X \text { of degree } d\right\}}$ Kontsevich moduli space.
Let $\Omega_{1}, \Omega_{2}, \Omega_{3} \subset X$ be closed, in general position.
Gromov-Witten variety:

$$
M_{d}\left(\Omega_{1}, \Omega_{2}, \Omega_{3}\right)=\left\{f \in M_{d} \mid f(0) \in \Omega_{1}, f(1) \in \Omega_{2}, f(\infty) \in \Omega_{3}\right\}
$$

$$
\left\langle\left[\Omega_{1}\right],\left[\Omega_{2}\right],\left[\Omega_{3}\right]\right\rangle_{d}= \begin{cases}\# M_{d}\left(\Omega_{1}, \Omega_{2}, \Omega_{3}\right) & \text { if finite } \\ 0 & \text { otherwise }\end{cases}
$$

$$
\begin{aligned}
\left\langle\left[\mathcal{O}_{\Omega_{1}}\right],\left[\mathcal{O}_{\Omega_{2}}\right],\left[\mathcal{O}_{\Omega_{3}}\right]\right\rangle_{d} & =\chi\left(\mathcal{O}_{M_{d}\left(\Omega_{1}, \Omega_{2}, \Omega_{3}\right)}\right) \\
& =\sum_{p \geq 0}(-1)^{p} \operatorname{dim} H^{p}\left(M_{d}\left(\Omega_{1}, \Omega_{2}, \Omega_{3}\right), \mathcal{O}\right)
\end{aligned}
$$

Quantum cohomology

$$
\begin{aligned}
& Q H(X)=H(X) \otimes \mathbb{Z}[q] \\
& {\left[X^{u}\right] \star\left[X^{v}\right]=\sum_{w, d \geq 0}\left\langle\left[X^{u}\right],\left[X^{v}\right],\left[X_{w}\right]\right\rangle_{d} q^{d}\left[X^{w}\right]}
\end{aligned}
$$

Quantum K-theory

$$
\begin{aligned}
& \mathrm{QK}(X)=K(X) \otimes \mathbb{Z}[[q]] \\
& {\left[\mathcal{O}_{X^{u}}\right] \star\left[\mathcal{O}_{X^{v}}\right]=\sum_{w, d \geq 0} N_{u, v}^{w, d} q^{d}\left[\mathcal{O}_{X^{w}}\right]}
\end{aligned}
$$

where $N_{u, v}^{w, d}=\left\langle\mathcal{O}_{X^{u}}, \mathcal{O}_{X^{v}}, \mathcal{I}_{w}\right\rangle_{d}-\sum_{\kappa, 0<e \leq d} N_{u, v}^{\kappa, d-e}\left\langle\mathcal{O}^{\kappa}, \mathcal{I}_{w}\right\rangle_{d}$ and $\mathcal{I}_{w} \subset \mathcal{O}_{X_{w}}$ ideal sheaf of $\partial X_{w}=\bigcup_{w^{\prime}<w} X_{w^{\prime}}$

Results about $\mathrm{QK}(X)$

Finiteness: $\quad N_{u, v}^{w, d}=0$ for large degrees d.

$$
\begin{aligned}
& \operatorname{Gr}(m, n) \quad[\mathrm{BM}], \quad \operatorname{Pic}(X)=\mathbb{Z} \quad[\mathrm{BCMP}] \\
& G / B \quad[\text { Kato }], \quad G / P \quad[\text { Anderson-Chen-Tseng }]
\end{aligned}
$$

Functoriality:

\exists ring hom. $\mathrm{QK}(G / P) \rightarrow \mathbb{Z} \quad$ [B-Chung], [B-Chung-Li-Mihalcea]
\exists ring hom. $\mathrm{QK}(G / P) \rightarrow \operatorname{QK}(G / Q)$ whenever $P \subset Q \quad[$ Kato]
Chevalley formula for product with divisor in $\mathrm{QK}(X)$:
X cominuscule [BCMP]
$X=G / B \quad$ [Lenart-Naito-Sagaki]
Positivity conjecture:
$(-1)^{\ell(u v w)+\operatorname{deg}\left(q^{d}\right)} N_{u, v}^{w, d} \geq 0 \quad$ where $\quad \operatorname{deg}\left(q^{d}\right)=\int_{d} c_{1}\left(T_{X}\right)$
Proved if X is minuscule or quadric hypersurface [BCMP]

Powers of q in quantum products

Theorem (Postnikov)
$X=\operatorname{Gr}(m, n) \Rightarrow$ powers of q in $\left[X^{u}\right] \star\left[X^{v}\right] \in Q H(X)$ is an interval.
Theorem (BCMP)
X cominuscule \Rightarrow powers of q in $\left[X^{u}\right] \star\left[X^{v}\right] \in Q H(X)$ is an interval.
X cominuscule \Rightarrow powers of q in $\left[\mathcal{O}_{X^{u}}\right] \star\left[\mathcal{O}_{X^{v}}\right] \in \operatorname{QK}(X)$ is an interval.
X minuscule $\Rightarrow\left[X^{u}\right] \star\left[X^{v}\right]$ and $\left[\mathcal{O}_{X^{u}}\right] \star\left[\mathcal{O}_{X^{v}}\right]$ contain same powers of q.

Example:

$X=\mathrm{Fl}(6), w=164532$.
Powers of q in $\left[X^{w}\right]^{2} \in Q H(X)$ do not form an interval.

Seidel representation

Given $Y=G / P_{Y}$, let $\pi_{Y} \in W^{Y}$ be the longest element ($Y^{\pi_{Y}}=$ point $)$.
Theorem (Chaput-Manivel-Perrin):
Y cominuscule, X any flag variety \Rightarrow

$$
\left[X^{\pi_{\curlyvee}}\right] \star\left[X^{w}\right]=q^{d(Y, w)}\left[X^{\pi_{\curlyvee} w}\right] \text { in } Q H(X)
$$

Theorem (BCMP):
Y and X both cominuscule \Rightarrow

$$
\left[\mathcal{O}_{X^{\pi} Y}\right] \star\left[\mathcal{O}_{X^{w}}\right]=q^{d(Y, w)}\left[\mathcal{O}_{X^{\pi} Y^{w}}\right] \text { in } \operatorname{QK}(X)
$$

Example: $X=O G(n+1,2 n+2), \quad Y=O G(1,2 n+2)$

$$
\begin{aligned}
& X^{\pi_{Y}}=X^{(n)}=X \\
& {\left[\mathcal{O}_{X^{(n)}}\right] \star\left[\mathcal{O}_{X^{\lambda}}\right]=\left\{\begin{array}{ll}
{\left[\mathcal{O}_{X^{(n, \lambda)}}\right]} & \text { if } \lambda_{1}<n \\
q\left[\mathcal{O}_{X^{\bar{\lambda}}}\right] & \text { if } \lambda_{1}=n,
\end{array} \quad \text { where } \bar{\lambda}=\left(\lambda_{2}, \ldots, \lambda_{\ell}\right)\right.}
\end{aligned}
$$

Pieri formula for $\mathrm{QK}(X), \quad X=\mathrm{OG}(n+1,2 n+2)$

Compute $\left[\mathcal{O}_{X(p)}\right] \star\left[\mathcal{O}_{X \lambda}\right]$ in $\operatorname{QK}(X)$
Assume $\lambda_{1}<n$:
$\left[X^{(p)}\right] \star\left[X^{\lambda}\right]$ has no q-terms $\Rightarrow\left[\mathcal{O}_{X(p)}\right] \star\left[\mathcal{O}_{X^{\lambda}}\right]$ has no q-terms.
$\left[\mathcal{O}_{X(p)}\right] \star\left[\mathcal{O}_{X^{\lambda}}\right]=\left[\mathcal{O}_{X^{(p)}}\right] \cdot\left[\mathcal{O}_{X^{\lambda}}\right]=\sum_{\nu} C_{p, \lambda}^{\nu}\left[\mathcal{O}_{X^{\nu}}\right]$
Assume $\lambda_{1}=n$:
$\left[\mathcal{O}_{X^{(\rho)}}\right] \star\left[\mathcal{O}_{X^{\lambda}}\right]=\left[\mathcal{O}_{X^{(\rho)}}\right] \star\left[\mathcal{O}_{X^{\bar{\lambda}}}\right] \star\left[\mathcal{O}_{X^{(n)}}\right]=\sum_{\nu} C_{p, \bar{\lambda}}^{\nu}\left[\mathcal{O}_{X^{\nu}}\right] \star\left[\mathcal{O}_{X^{(n)}}\right]$

