A Pieri rule for the quantum K-theory of OG(n,2n)

Joint with Pierre-Emmanuel Chaput, Leonardo Mihalcea, Nicolas Perrin

$$X = G/P_X$$
 flag variety. $T \subset B \subset P_X \subset G$

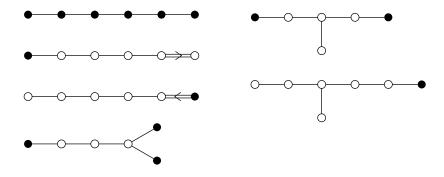
$$W = N_G(T)/T$$
 Weyl group. $W_X = N_{P_X}(T)/T$ Weyl group of P_X . $W^X \subset W$ minimal representatives of cosets in W/W_X .

Schubert varieties: For
$$w \in W$$
 set $X_w = \overline{Bw.P_X}$ and $X^w = \overline{B^-w.P_X}$ $w \in W^X \Rightarrow \dim(X_w) = \operatorname{codim}(X^w, X) = \ell(w)$

K-theory ring:
$$K(X) = \bigoplus_{w \in W^X} \mathbb{Z}\left[\mathcal{O}_{X^w}\right]$$

$$[\mathcal{O}_{X^u}] \cdot [\mathcal{O}_{X^v}] = \sum_{u,v} C_{u,v}^w [\mathcal{O}_{X^w}] \qquad \text{Brion: } (-1)^{\ell(wuv)} C_{u,v}^w \ge 0$$

Cominuscule simple roots

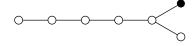


Cominuscule flag variety: G/P_{α} with α is cominuscule.

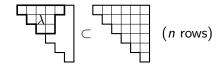
Minuscule flag variety: G/P_{α} with α is cominuscule, G simply laced.

Maximal orthogonal Grassmannians

 $X = OG(n+1,2n+2) = component in \{V \subset \mathbb{C}^{2n+2} \mid V \text{ max isotropic}\}$



$$W^X \iff \text{strict partitions } \lambda = (\lambda_1 > \lambda_2 > \dots > \lambda_\ell > 0)$$



$$\operatorname{codim}(X^{\lambda}, X) = |\lambda| = \# \text{ boxes in } \lambda$$

Pieri formula for K(X), X = OG(n+1, 2n+2)

Let $\lambda \subset \nu$ be strict partitions.

A KOG tableau of shape ν/λ is a labeling of the boxes in ν/λ with integers such that

- (1) All rows and columns are strictly increasing, and
- (2) Each label is either \leq all labels south-west of it, or \geq all labels south-west of it.

Theorem (B-Ravikumar)
$$[\mathcal{O}_{X^{(p)}}] \cdot [\mathcal{O}_{X^{\lambda}}] = \sum_{\nu} C^{\nu}_{p,\lambda} [\mathcal{O}_{X^{\nu}}]$$
 in $K(X)$ $C^{\nu}_{p,\lambda} = (-1)^{|\nu/\lambda|-p} \# \text{ KOG-tableau of shape } \nu/\lambda \text{ with content } \{1,\dots,p\}$

Example:
$$\nu = (5, 3, 1), \ \lambda = (4, 1), \ p = 3.$$
 Then $C_{3,\lambda}^{\nu} = -4.$

Gromov-Witten invariants

$$M_d = \overline{\mathcal{M}}_{0,3}(X,d) = \overline{\{f: \mathbb{P}^1 o X \text{ of degree } d\}}$$
 Kontsevich moduli space.

Let $\Omega_1, \Omega_2, \Omega_3 \subset X$ be closed, in general position.

Gromov-Witten variety:

$$M_d(\Omega_1, \Omega_2, \Omega_3) = \{ f \in M_d \mid f(0) \in \Omega_1, f(1) \in \Omega_2, f(\infty) \in \Omega_3 \}$$

$$\langle [\Omega_1], [\Omega_2], [\Omega_3] \rangle_d \ = \ \begin{cases} \# M_d(\Omega_1, \Omega_2, \Omega_3) & \text{if finite} \\ 0 & \text{otherwise}. \end{cases}$$

$$\langle [\mathcal{O}_{\Omega_1}], [\mathcal{O}_{\Omega_2}], [\mathcal{O}_{\Omega_3}] \rangle_d = \chi(\mathcal{O}_{M_d(\Omega_1, \Omega_2, \Omega_3)})$$

$$= \sum_{p \geq 0} (-1)^p \dim H^p(M_d(\Omega_1, \Omega_2, \Omega_3), \mathcal{O})$$

Quantum cohomology

$$QH(X) = H(X) \otimes \mathbb{Z}[q]$$
$$[X^{u}] \star [X^{v}] = \sum_{w, d \geq 0} \langle [X^{u}], [X^{v}], [X_{w}] \rangle_{d} q^{d} [X^{w}]$$

Quantum K-theory

$$QK(X) = K(X) \otimes \mathbb{Z}[[q]]$$

$$\left[\mathcal{O}_{X^{u}}\right]\star\left[\mathcal{O}_{X^{v}}\right]=\sum_{w,d>0}N_{u,v}^{w,d}\,q^{d}\left[\mathcal{O}_{X^{w}}\right]$$

where
$$N_{u,v}^{w,d} = \langle \mathcal{O}_{X^u}, \mathcal{O}_{X^v}, \mathcal{I}_w \rangle_d - \sum_{\kappa, 0 < e \leq d} N_{u,v}^{\kappa, d-e} \langle \mathcal{O}^{\kappa}, \mathcal{I}_w \rangle_d$$

and
$$\mathcal{I}_w \subset \mathcal{O}_{X_w}$$
 ideal sheaf of $\partial X_w = \bigcup_{w' < w} X_{w'}$

Results about QK(X)

Finiteness: $N_{u,v}^{w,d} = 0$ for large degrees d.

Gr(m,n) [BM], $Pic(X) = \mathbb{Z}$ [BCMP], G/B [Kato], G/P [Anderson-Chen-Tseng]

Functoriality:

 \exists ring hom. $\mathsf{QK}(G/P) \to \mathbb{Z}$ [B-Chung], [B-Chung-Li-Mihalcea] \exists ring hom. $\mathsf{QK}(G/P) \to \mathsf{QK}(G/Q)$ whenever $P \subset Q$ [Kato]

Chevalley formula for product with divisor in QK(X):

X cominuscule [BCMP]

X = G/B [Lenart-Naito-Sagaki]

Positivity conjecture:

 $(-1)^{\ell(uvw)+\deg(q^d)}\,N_{u,v}^{w,d}\geq 0$ where $\deg(q^d)=\int_d c_1(T_X)$ Proved if X is minuscule or quadric hypersurface [BCMP]

Powers of q in quantum products

Theorem (Postnikov)

 $X = Gr(m, n) \Rightarrow$ powers of q in $[X^u] \star [X^v] \in QH(X)$ is an interval.

Theorem (BCMP)

X cominuscule \Rightarrow powers of q in $[X^u] \star [X^v] \in QH(X)$ is an interval.

X cominuscule \Rightarrow powers of q in $[\mathcal{O}_{X^u}] \star [\mathcal{O}_{X^v}] \in \mathsf{QK}(X)$ is an interval.

X minuscule $\Rightarrow [X^u] \star [X^v]$ and $[\mathcal{O}_{X^u}] \star [\mathcal{O}_{X^v}]$ contain **same** powers of q.

Example:

X = FI(6), w = 164532.

Powers of q in $[X^w]^2 \in QH(X)$ do not form an interval.

Seidel representation

Given $Y = G/P_Y$, let $\pi_Y \in W^Y$ be the longest element $(Y^{\pi_Y} = point)$.

Theorem (Chaput-Manivel-Perrin):

Y cominuscule, X any flag variety
$$\Rightarrow$$
 $[X^{\pi_Y}] \star [X^w] = q^{d(Y,w)} [X^{\pi_Y w}]$ in $QH(X)$

Theorem (BCMP):

Y and X both cominuscule
$$\Rightarrow$$

$$[\mathcal{O}_{X^{\pi_Y}}] \star [\mathcal{O}_{X^w}] = a^{d(Y,w)} [\mathcal{O}_{X^{\pi_Y w}}] \text{ in QK}(X)$$

Example: X = OG(n+1, 2n+2), Y = OG(1, 2n+2)

$$X^{\pi_Y} = X^{(n)} = X^{\text{litter}}$$

$$[\mathcal{O}_{X^{(n)}}] \star [\mathcal{O}_{X^{\lambda}}] = \begin{cases} [\mathcal{O}_{X^{(n,\lambda)}}] & \text{if } \lambda_1 < n \\ q[\mathcal{O}_{X^{\overline{\lambda}}}] & \text{if } \lambda_1 = n, \quad \text{where } \overline{\lambda} = (\lambda_2, \dots, \lambda_\ell) \end{cases}$$

Pieri formula for QK(X), X = OG(n+1, 2n+2)

Compute $[\mathcal{O}_{X(p)}] \star [\mathcal{O}_{X^{\lambda}}]$ in QK(X)

Assume $\lambda_1 < n$:

$$[X^{(p)}] \star [X^{\lambda}]$$
 has no q -terms $\Rightarrow [\mathcal{O}_{X^{(p)}}] \star [\mathcal{O}_{X^{\lambda}}]$ has no q -terms.

$$[\mathcal{O}_{X^{(p)}}] \star [\mathcal{O}_{X^{\lambda}}] = [\mathcal{O}_{X^{(p)}}] \cdot [\mathcal{O}_{X^{\lambda}}] = \sum_{\nu} C^{\nu}_{p,\lambda} [\mathcal{O}_{X^{\nu}}]$$

Assume $\lambda_1 = n$:

$$[\mathcal{O}_{X^{(\rho)}}]\star[\mathcal{O}_{X^{\lambda}}] \ = \ [\mathcal{O}_{X^{(\rho)}}]\star[\mathcal{O}_{X^{\overline{\lambda}}}]\star[\mathcal{O}_{X^{(n)}}] \ = \ \sum_{\nu} C^{\nu}_{\rho,\overline{\lambda}} \left[\mathcal{O}_{X^{\nu}}\right]\star[\mathcal{O}_{X^{(n)}}]$$