Intermediate Microeconomics
 Homework 3

1. For each of the following production functions, determine if the technology exhibits increasing, decreasing, or constant returns to scale.
a. $f(L, K)=L+K$
b. $f(L, K)=\sqrt{L}+\sqrt{K}$
c. $f(L . K)=L K+L+K$
d. $f(L, K)=\sqrt{K L}+L+K$
2. Draw isoquant maps for the following technologies.
i) $f(L, K)=L K$
ii) $g(L, K)=L+2 K$
iii) $h(L, K)=\min (2 L, K)$
3. Frisbees are produced according to the production function $q=2 K+L$ where $q=$ output of frisbees per hour, $K=$ capital input per hour, $L=$ labor input per hour.
a) If $K=10$, how much L is needed to produce 100 frisbees per hour?
b) If $K=25$, how much L is needed to produce 100 frisbees per hour?
c) Graph the $q=100$ isoquant. Indicate the points on that isoquant defined in part a and part b. What is the RTS along this isoquant? Explain why the RTS is the same at every point on the isoquant.
d) Graph the $q=50$ and $q=200$ isoquants for this production function also. Describe the shape of the entire isoquant map.
e) Suppose technical progress resulted in the production function for frisbees becoming $q=3 K+1.5 L$. Answer part a through part d for this new production function and discuss how it compares to the previous case.
4. Consider the production function $f(L, K)=L+K$.
a. Suppose K is fixed at 2. Find algebraic expressions for the total product of labor function $T P(L)$, the average product of labor $A P(L)$, and the marginal product of labor $M P(L)$.
b. Graph the functions in part a.
5. A firm uses capital and labor to produce output according to the production function $q=4 \sqrt{K L}$, for which $M P_{L}=2 \sqrt{K / L}$ and $M P_{K}=$ $2 \sqrt{L / K}$.
a. If the wage $w=\$ 4$ and the rental rate of capital $r=\$ 1$, what is the least expensive way to produce 16 units of output?
b. What is the minimum cost of producing 16 units?
c. Show that for any level of output q, the minimum cost of producing q is $\$ q$.
d. Explain how a 10% wage tax would affect the way in which the firm chooses to produce any given amount of output
